| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolctb2 | Structured version Visualization version GIF version | ||
| Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolctb2 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4158 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ ℕ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
| 3 | nnssre 12252 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 4 | unss 4170 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ) ↔ (𝐴 ∪ ℕ) ⊆ ℝ) | |
| 5 | 2, 3, 4 | sylanblc 589 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ⊆ ℝ) |
| 6 | nnenom 14003 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 7 | domentr 9035 | . . . . . . . 8 ⊢ ((𝐴 ≼ ℕ ∧ ℕ ≈ ω) → 𝐴 ≼ ω) | |
| 8 | 6, 7 | mpan2 691 | . . . . . . 7 ⊢ (𝐴 ≼ ℕ → 𝐴 ≼ ω) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ≼ ω) |
| 10 | nnct 14004 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 11 | unctb 10226 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ℕ ≼ ω) → (𝐴 ∪ ℕ) ≼ ω) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ω) |
| 13 | 6 | ensymi 9026 | . . . . 5 ⊢ ω ≈ ℕ |
| 14 | domentr 9035 | . . . . 5 ⊢ (((𝐴 ∪ ℕ) ≼ ω ∧ ω ≈ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ) | |
| 15 | 12, 13, 14 | sylancl 586 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ) |
| 16 | reex 11228 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 17 | 16 | ssex 5301 | . . . . . 6 ⊢ ((𝐴 ∪ ℕ) ⊆ ℝ → (𝐴 ∪ ℕ) ∈ V) |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ∈ V) |
| 19 | ssun2 4159 | . . . . 5 ⊢ ℕ ⊆ (𝐴 ∪ ℕ) | |
| 20 | ssdomg 9022 | . . . . 5 ⊢ ((𝐴 ∪ ℕ) ∈ V → (ℕ ⊆ (𝐴 ∪ ℕ) → ℕ ≼ (𝐴 ∪ ℕ))) | |
| 21 | 18, 19, 20 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ℕ ≼ (𝐴 ∪ ℕ)) |
| 22 | sbth 9115 | . . . 4 ⊢ (((𝐴 ∪ ℕ) ≼ ℕ ∧ ℕ ≼ (𝐴 ∪ ℕ)) → (𝐴 ∪ ℕ) ≈ ℕ) | |
| 23 | 15, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≈ ℕ) |
| 24 | ovolctb 25461 | . . 3 ⊢ (((𝐴 ∪ ℕ) ⊆ ℝ ∧ (𝐴 ∪ ℕ) ≈ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0) | |
| 25 | 5, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0) |
| 26 | ovolssnul 25458 | . 2 ⊢ ((𝐴 ⊆ (𝐴 ∪ ℕ) ∧ (𝐴 ∪ ℕ) ⊆ ℝ ∧ (vol*‘(𝐴 ∪ ℕ)) = 0) → (vol*‘𝐴) = 0) | |
| 27 | 1, 5, 25, 26 | mp3an2i 1467 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 ωcom 7869 ≈ cen 8964 ≼ cdom 8965 ℝcr 11136 0cc0 11137 ℕcn 12248 vol*covol 25433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xadd 13137 df-ioo 13373 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-sum 15705 df-xmet 21319 df-met 21320 df-ovol 25435 |
| This theorem is referenced by: ovol0 25464 ovolfi 25465 uniiccdif 25549 voliunnfl 37630 volsupnfl 37631 |
| Copyright terms: Public domain | W3C validator |