| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovolctb2 | Structured version Visualization version GIF version | ||
| Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.) |
| Ref | Expression |
|---|---|
| ovolctb2 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4125 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ ℕ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ) | |
| 3 | nnssre 12129 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 4 | unss 4137 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ) ↔ (𝐴 ∪ ℕ) ⊆ ℝ) | |
| 5 | 2, 3, 4 | sylanblc 589 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ⊆ ℝ) |
| 6 | nnenom 13887 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 7 | domentr 8935 | . . . . . . . 8 ⊢ ((𝐴 ≼ ℕ ∧ ℕ ≈ ω) → 𝐴 ≼ ω) | |
| 8 | 6, 7 | mpan2 691 | . . . . . . 7 ⊢ (𝐴 ≼ ℕ → 𝐴 ≼ ω) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ≼ ω) |
| 10 | nnct 13888 | . . . . . 6 ⊢ ℕ ≼ ω | |
| 11 | unctb 10095 | . . . . . 6 ⊢ ((𝐴 ≼ ω ∧ ℕ ≼ ω) → (𝐴 ∪ ℕ) ≼ ω) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ω) |
| 13 | 6 | ensymi 8926 | . . . . 5 ⊢ ω ≈ ℕ |
| 14 | domentr 8935 | . . . . 5 ⊢ (((𝐴 ∪ ℕ) ≼ ω ∧ ω ≈ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ) | |
| 15 | 12, 13, 14 | sylancl 586 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ) |
| 16 | reex 11097 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 17 | 16 | ssex 5257 | . . . . . 6 ⊢ ((𝐴 ∪ ℕ) ⊆ ℝ → (𝐴 ∪ ℕ) ∈ V) |
| 18 | 5, 17 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ∈ V) |
| 19 | ssun2 4126 | . . . . 5 ⊢ ℕ ⊆ (𝐴 ∪ ℕ) | |
| 20 | ssdomg 8922 | . . . . 5 ⊢ ((𝐴 ∪ ℕ) ∈ V → (ℕ ⊆ (𝐴 ∪ ℕ) → ℕ ≼ (𝐴 ∪ ℕ))) | |
| 21 | 18, 19, 20 | mpisyl 21 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ℕ ≼ (𝐴 ∪ ℕ)) |
| 22 | sbth 9010 | . . . 4 ⊢ (((𝐴 ∪ ℕ) ≼ ℕ ∧ ℕ ≼ (𝐴 ∪ ℕ)) → (𝐴 ∪ ℕ) ≈ ℕ) | |
| 23 | 15, 21, 22 | syl2anc 584 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≈ ℕ) |
| 24 | ovolctb 25418 | . . 3 ⊢ (((𝐴 ∪ ℕ) ⊆ ℝ ∧ (𝐴 ∪ ℕ) ≈ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0) | |
| 25 | 5, 23, 24 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0) |
| 26 | ovolssnul 25415 | . 2 ⊢ ((𝐴 ⊆ (𝐴 ∪ ℕ) ∧ (𝐴 ∪ ℕ) ⊆ ℝ ∧ (vol*‘(𝐴 ∪ ℕ)) = 0) → (vol*‘𝐴) = 0) | |
| 27 | 1, 5, 25, 26 | mp3an2i 1468 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 ℝcr 11005 0cc0 11006 ℕcn 12125 vol*covol 25390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 df-xmet 21284 df-met 21285 df-ovol 25392 |
| This theorem is referenced by: ovol0 25421 ovolfi 25422 uniiccdif 25506 voliunnfl 37712 volsupnfl 37713 |
| Copyright terms: Public domain | W3C validator |