MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb2 Structured version   Visualization version   GIF version

Theorem ovolctb2 25391
Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ovolctb2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb2
StepHypRef Expression
1 ssun1 4129 . 2 𝐴 ⊆ (𝐴 ∪ ℕ)
2 simpl 482 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ)
3 nnssre 12132 . . 3 ℕ ⊆ ℝ
4 unss 4141 . . 3 ((𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ) ↔ (𝐴 ∪ ℕ) ⊆ ℝ)
52, 3, 4sylanblc 589 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ⊆ ℝ)
6 nnenom 13887 . . . . . . . 8 ℕ ≈ ω
7 domentr 8938 . . . . . . . 8 ((𝐴 ≼ ℕ ∧ ℕ ≈ ω) → 𝐴 ≼ ω)
86, 7mpan2 691 . . . . . . 7 (𝐴 ≼ ℕ → 𝐴 ≼ ω)
98adantl 481 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ≼ ω)
10 nnct 13888 . . . . . 6 ℕ ≼ ω
11 unctb 10098 . . . . . 6 ((𝐴 ≼ ω ∧ ℕ ≼ ω) → (𝐴 ∪ ℕ) ≼ ω)
129, 10, 11sylancl 586 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ω)
136ensymi 8929 . . . . 5 ω ≈ ℕ
14 domentr 8938 . . . . 5 (((𝐴 ∪ ℕ) ≼ ω ∧ ω ≈ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ)
1512, 13, 14sylancl 586 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ)
16 reex 11100 . . . . . . 7 ℝ ∈ V
1716ssex 5260 . . . . . 6 ((𝐴 ∪ ℕ) ⊆ ℝ → (𝐴 ∪ ℕ) ∈ V)
185, 17syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ∈ V)
19 ssun2 4130 . . . . 5 ℕ ⊆ (𝐴 ∪ ℕ)
20 ssdomg 8925 . . . . 5 ((𝐴 ∪ ℕ) ∈ V → (ℕ ⊆ (𝐴 ∪ ℕ) → ℕ ≼ (𝐴 ∪ ℕ)))
2118, 19, 20mpisyl 21 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ℕ ≼ (𝐴 ∪ ℕ))
22 sbth 9014 . . . 4 (((𝐴 ∪ ℕ) ≼ ℕ ∧ ℕ ≼ (𝐴 ∪ ℕ)) → (𝐴 ∪ ℕ) ≈ ℕ)
2315, 21, 22syl2anc 584 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≈ ℕ)
24 ovolctb 25389 . . 3 (((𝐴 ∪ ℕ) ⊆ ℝ ∧ (𝐴 ∪ ℕ) ≈ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0)
255, 23, 24syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0)
26 ovolssnul 25386 . 2 ((𝐴 ⊆ (𝐴 ∪ ℕ) ∧ (𝐴 ∪ ℕ) ⊆ ℝ ∧ (vol*‘(𝐴 ∪ ℕ)) = 0) → (vol*‘𝐴) = 0)
271, 5, 25, 26mp3an2i 1468 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903   class class class wbr 5092  cfv 6482  ωcom 7799  cen 8869  cdom 8870  cr 11008  0cc0 11009  cn 12128  vol*covol 25361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363
This theorem is referenced by:  ovol0  25392  ovolfi  25393  uniiccdif  25477  voliunnfl  37644  volsupnfl  37645
  Copyright terms: Public domain W3C validator