MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolctb2 Structured version   Visualization version   GIF version

Theorem ovolctb2 24008
Description: The volume of a countable set is 0. (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ovolctb2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0)

Proof of Theorem ovolctb2
StepHypRef Expression
1 ssun1 4151 . 2 𝐴 ⊆ (𝐴 ∪ ℕ)
2 simpl 483 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ⊆ ℝ)
3 nnssre 11634 . . 3 ℕ ⊆ ℝ
4 unss 4163 . . 3 ((𝐴 ⊆ ℝ ∧ ℕ ⊆ ℝ) ↔ (𝐴 ∪ ℕ) ⊆ ℝ)
52, 3, 4sylanblc 589 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ⊆ ℝ)
6 nnenom 13341 . . . . . . . 8 ℕ ≈ ω
7 domentr 8560 . . . . . . . 8 ((𝐴 ≼ ℕ ∧ ℕ ≈ ω) → 𝐴 ≼ ω)
86, 7mpan2 687 . . . . . . 7 (𝐴 ≼ ℕ → 𝐴 ≼ ω)
98adantl 482 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → 𝐴 ≼ ω)
10 nnct 13342 . . . . . 6 ℕ ≼ ω
11 unctb 9619 . . . . . 6 ((𝐴 ≼ ω ∧ ℕ ≼ ω) → (𝐴 ∪ ℕ) ≼ ω)
129, 10, 11sylancl 586 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ω)
136ensymi 8551 . . . . 5 ω ≈ ℕ
14 domentr 8560 . . . . 5 (((𝐴 ∪ ℕ) ≼ ω ∧ ω ≈ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ)
1512, 13, 14sylancl 586 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≼ ℕ)
16 reex 10620 . . . . . . 7 ℝ ∈ V
1716ssex 5221 . . . . . 6 ((𝐴 ∪ ℕ) ⊆ ℝ → (𝐴 ∪ ℕ) ∈ V)
185, 17syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ∈ V)
19 ssun2 4152 . . . . 5 ℕ ⊆ (𝐴 ∪ ℕ)
20 ssdomg 8547 . . . . 5 ((𝐴 ∪ ℕ) ∈ V → (ℕ ⊆ (𝐴 ∪ ℕ) → ℕ ≼ (𝐴 ∪ ℕ)))
2118, 19, 20mpisyl 21 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → ℕ ≼ (𝐴 ∪ ℕ))
22 sbth 8629 . . . 4 (((𝐴 ∪ ℕ) ≼ ℕ ∧ ℕ ≼ (𝐴 ∪ ℕ)) → (𝐴 ∪ ℕ) ≈ ℕ)
2315, 21, 22syl2anc 584 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (𝐴 ∪ ℕ) ≈ ℕ)
24 ovolctb 24006 . . 3 (((𝐴 ∪ ℕ) ⊆ ℝ ∧ (𝐴 ∪ ℕ) ≈ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0)
255, 23, 24syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘(𝐴 ∪ ℕ)) = 0)
26 ovolssnul 24003 . 2 ((𝐴 ⊆ (𝐴 ∪ ℕ) ∧ (𝐴 ∪ ℕ) ⊆ ℝ ∧ (vol*‘(𝐴 ∪ ℕ)) = 0) → (vol*‘𝐴) = 0)
271, 5, 25, 26mp3an2i 1459 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ) → (vol*‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2106  Vcvv 3499  cun 3937  wss 3939   class class class wbr 5062  cfv 6351  ωcom 7571  cen 8498  cdom 8499  cr 10528  0cc0 10529  cn 11630  vol*covol 23978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xadd 12501  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-xmet 20454  df-met 20455  df-ovol 23980
This theorem is referenced by:  ovol0  24009  ovolfi  24010  uniiccdif  24094  voliunnfl  34804  volsupnfl  34805
  Copyright terms: Public domain W3C validator