![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2mpt | Structured version Visualization version GIF version |
Description: Version of setrec2 48787 where 𝐹 is defined using maps-to notation. Deduction form is omitted in the second hypothesis for simplicity. In practice, nothing important is lost since we are only interested in one choice of 𝐴, 𝑆, and 𝑉 at a time. However, we are interested in what happens when 𝐶 varies, so deduction form is used in the third hypothesis. (Contributed by Emmett Weisz, 4-Jun-2024.) |
Ref | Expression |
---|---|
setrec2mpt.1 | ⊢ 𝐵 = setrecs((𝑎 ∈ 𝐴 ↦ 𝑆)) |
setrec2mpt.2 | ⊢ (𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉) |
setrec2mpt.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶)) |
Ref | Expression |
---|---|
setrec2mpt | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5274 | . 2 ⊢ Ⅎ𝑎(𝑎 ∈ 𝐴 ↦ 𝑆) | |
2 | setrec2mpt.1 | . 2 ⊢ 𝐵 = setrecs((𝑎 ∈ 𝐴 ↦ 𝑆)) | |
3 | setrec2mpt.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶)) | |
4 | setrec2mpt.2 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉) | |
5 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑎 ∈ 𝐴 ↦ 𝑆) = (𝑎 ∈ 𝐴 ↦ 𝑆) | |
6 | 5 | fvmpt2 7040 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = 𝑆) |
7 | eqimss 4067 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = 𝑆 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) | |
8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
9 | 4, 8 | mpdan 686 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
10 | 5 | fvmptndm 7060 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = ∅) |
11 | 0ss 4423 | . . . . . . 7 ⊢ ∅ ⊆ 𝑆 | |
12 | 10, 11 | eqsstrdi 4063 | . . . . . 6 ⊢ (¬ 𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
13 | 9, 12 | pm2.61i 182 | . . . . 5 ⊢ ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆 |
14 | sstr2 4015 | . . . . 5 ⊢ (((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆 → (𝑆 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (𝑆 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶) |
16 | 15 | imim2i 16 | . . 3 ⊢ ((𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶) → (𝑎 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) |
17 | 3, 16 | sylg 1821 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) |
18 | 1, 2, 17 | setrec2 48787 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∅c0 4352 ↦ cmpt 5249 ‘cfv 6573 setrecscsetrecs 48775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-setrecs 48776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |