| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2mpt | Structured version Visualization version GIF version | ||
| Description: Version of setrec2 49559 where 𝐹 is defined using maps-to notation. Deduction form is omitted in the second hypothesis for simplicity. In practice, nothing important is lost since we are only interested in one choice of 𝐴, 𝑆, and 𝑉 at a time. However, we are interested in what happens when 𝐶 varies, so deduction form is used in the third hypothesis. (Contributed by Emmett Weisz, 4-Jun-2024.) |
| Ref | Expression |
|---|---|
| setrec2mpt.1 | ⊢ 𝐵 = setrecs((𝑎 ∈ 𝐴 ↦ 𝑆)) |
| setrec2mpt.2 | ⊢ (𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉) |
| setrec2mpt.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶)) |
| Ref | Expression |
|---|---|
| setrec2mpt | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5220 | . 2 ⊢ Ⅎ𝑎(𝑎 ∈ 𝐴 ↦ 𝑆) | |
| 2 | setrec2mpt.1 | . 2 ⊢ 𝐵 = setrecs((𝑎 ∈ 𝐴 ↦ 𝑆)) | |
| 3 | setrec2mpt.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶)) | |
| 4 | setrec2mpt.2 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉) | |
| 5 | eqid 2735 | . . . . . . . . 9 ⊢ (𝑎 ∈ 𝐴 ↦ 𝑆) = (𝑎 ∈ 𝐴 ↦ 𝑆) | |
| 6 | 5 | fvmpt2 6997 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = 𝑆) |
| 7 | eqimss 4017 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = 𝑆 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) | |
| 8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
| 9 | 4, 8 | mpdan 687 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
| 10 | 5 | fvmptndm 7017 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = ∅) |
| 11 | 0ss 4375 | . . . . . . 7 ⊢ ∅ ⊆ 𝑆 | |
| 12 | 10, 11 | eqsstrdi 4003 | . . . . . 6 ⊢ (¬ 𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
| 13 | 9, 12 | pm2.61i 182 | . . . . 5 ⊢ ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆 |
| 14 | sstr2 3965 | . . . . 5 ⊢ (((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆 → (𝑆 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (𝑆 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶) |
| 16 | 15 | imim2i 16 | . . 3 ⊢ ((𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶) → (𝑎 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) |
| 17 | 3, 16 | sylg 1823 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) |
| 18 | 1, 2, 17 | setrec2 49559 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∅c0 4308 ↦ cmpt 5201 ‘cfv 6531 setrecscsetrecs 49547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-setrecs 49548 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |