Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2mpt Structured version   Visualization version   GIF version

Theorem setrec2mpt 49686
Description: Version of setrec2 49684 where 𝐹 is defined using maps-to notation. Deduction form is omitted in the second hypothesis for simplicity. In practice, nothing important is lost since we are only interested in one choice of 𝐴, 𝑆, and 𝑉 at a time. However, we are interested in what happens when 𝐶 varies, so deduction form is used in the third hypothesis. (Contributed by Emmett Weisz, 4-Jun-2024.)
Hypotheses
Ref Expression
setrec2mpt.1 𝐵 = setrecs((𝑎𝐴𝑆))
setrec2mpt.2 (𝑎𝐴𝑆𝑉)
setrec2mpt.3 (𝜑 → ∀𝑎(𝑎𝐶𝑆𝐶))
Assertion
Ref Expression
setrec2mpt (𝜑𝐵𝐶)
Distinct variable groups:   𝐴,𝑎   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝑆(𝑎)   𝑉(𝑎)

Proof of Theorem setrec2mpt
StepHypRef Expression
1 nfmpt1 5206 . 2 𝑎(𝑎𝐴𝑆)
2 setrec2mpt.1 . 2 𝐵 = setrecs((𝑎𝐴𝑆))
3 setrec2mpt.3 . . 3 (𝜑 → ∀𝑎(𝑎𝐶𝑆𝐶))
4 setrec2mpt.2 . . . . . . 7 (𝑎𝐴𝑆𝑉)
5 eqid 2729 . . . . . . . . 9 (𝑎𝐴𝑆) = (𝑎𝐴𝑆)
65fvmpt2 6979 . . . . . . . 8 ((𝑎𝐴𝑆𝑉) → ((𝑎𝐴𝑆)‘𝑎) = 𝑆)
7 eqimss 4005 . . . . . . . 8 (((𝑎𝐴𝑆)‘𝑎) = 𝑆 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝑆)
86, 7syl 17 . . . . . . 7 ((𝑎𝐴𝑆𝑉) → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝑆)
94, 8mpdan 687 . . . . . 6 (𝑎𝐴 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝑆)
105fvmptndm 6999 . . . . . . 7 𝑎𝐴 → ((𝑎𝐴𝑆)‘𝑎) = ∅)
11 0ss 4363 . . . . . . 7 ∅ ⊆ 𝑆
1210, 11eqsstrdi 3991 . . . . . 6 𝑎𝐴 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝑆)
139, 12pm2.61i 182 . . . . 5 ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝑆
14 sstr2 3953 . . . . 5 (((𝑎𝐴𝑆)‘𝑎) ⊆ 𝑆 → (𝑆𝐶 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝐶))
1513, 14ax-mp 5 . . . 4 (𝑆𝐶 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝐶)
1615imim2i 16 . . 3 ((𝑎𝐶𝑆𝐶) → (𝑎𝐶 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝐶))
173, 16sylg 1823 . 2 (𝜑 → ∀𝑎(𝑎𝐶 → ((𝑎𝐴𝑆)‘𝑎) ⊆ 𝐶))
181, 2, 17setrec2 49684 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wss 3914  c0 4296  cmpt 5188  cfv 6511  setrecscsetrecs 49672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-setrecs 49673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator