| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2mpt | Structured version Visualization version GIF version | ||
| Description: Version of setrec2 49706 where 𝐹 is defined using maps-to notation. Deduction form is omitted in the second hypothesis for simplicity. In practice, nothing important is lost since we are only interested in one choice of 𝐴, 𝑆, and 𝑉 at a time. However, we are interested in what happens when 𝐶 varies, so deduction form is used in the third hypothesis. (Contributed by Emmett Weisz, 4-Jun-2024.) |
| Ref | Expression |
|---|---|
| setrec2mpt.1 | ⊢ 𝐵 = setrecs((𝑎 ∈ 𝐴 ↦ 𝑆)) |
| setrec2mpt.2 | ⊢ (𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉) |
| setrec2mpt.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶)) |
| Ref | Expression |
|---|---|
| setrec2mpt | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5188 | . 2 ⊢ Ⅎ𝑎(𝑎 ∈ 𝐴 ↦ 𝑆) | |
| 2 | setrec2mpt.1 | . 2 ⊢ 𝐵 = setrecs((𝑎 ∈ 𝐴 ↦ 𝑆)) | |
| 3 | setrec2mpt.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶)) | |
| 4 | setrec2mpt.2 | . . . . . . 7 ⊢ (𝑎 ∈ 𝐴 → 𝑆 ∈ 𝑉) | |
| 5 | eqid 2730 | . . . . . . . . 9 ⊢ (𝑎 ∈ 𝐴 ↦ 𝑆) = (𝑎 ∈ 𝐴 ↦ 𝑆) | |
| 6 | 5 | fvmpt2 6935 | . . . . . . . 8 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = 𝑆) |
| 7 | eqimss 3991 | . . . . . . . 8 ⊢ (((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = 𝑆 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) | |
| 8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
| 9 | 4, 8 | mpdan 687 | . . . . . 6 ⊢ (𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
| 10 | 5 | fvmptndm 6955 | . . . . . . 7 ⊢ (¬ 𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) = ∅) |
| 11 | 0ss 4348 | . . . . . . 7 ⊢ ∅ ⊆ 𝑆 | |
| 12 | 10, 11 | eqsstrdi 3977 | . . . . . 6 ⊢ (¬ 𝑎 ∈ 𝐴 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆) |
| 13 | 9, 12 | pm2.61i 182 | . . . . 5 ⊢ ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆 |
| 14 | sstr2 3939 | . . . . 5 ⊢ (((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝑆 → (𝑆 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) | |
| 15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ (𝑆 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶) |
| 16 | 15 | imim2i 16 | . . 3 ⊢ ((𝑎 ⊆ 𝐶 → 𝑆 ⊆ 𝐶) → (𝑎 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) |
| 17 | 3, 16 | sylg 1824 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝑎 ∈ 𝐴 ↦ 𝑆)‘𝑎) ⊆ 𝐶)) |
| 18 | 1, 2, 17 | setrec2 49706 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ∅c0 4281 ↦ cmpt 5170 ‘cfv 6477 setrecscsetrecs 49694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-setrecs 49695 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |