MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt0 Structured version   Visualization version   GIF version

Theorem cnt0 22781
Description: The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnt0 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)

Proof of Theorem cnt0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 22675 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1135 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl3 1193 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 22700 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
53, 4sylan 580 . . . . . . . 8 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
6 eleq2 2822 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑥𝑧𝑥 ∈ (𝐹𝑤)))
7 eleq2 2822 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑦𝑧𝑦 ∈ (𝐹𝑤)))
86, 7bibi12d 345 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
98rspcv 3606 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐽 → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
105, 9syl 17 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
11 simprl 769 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥 𝐽)
12 eqid 2732 . . . . . . . . . . . . . 14 𝐽 = 𝐽
13 eqid 2732 . . . . . . . . . . . . . 14 𝐾 = 𝐾
1412, 13cnf 22681 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
153, 14syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹: 𝐽 𝐾)
1615ffnd 6706 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 Fn 𝐽)
17 elpreima 7045 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1816, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1911, 18mpbirand 705 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝐹𝑥) ∈ 𝑤))
20 simprr 771 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦 𝐽)
21 elpreima 7045 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2216, 21syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2320, 22mpbirand 705 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝐹𝑦) ∈ 𝑤))
2419, 23bibi12d 345 . . . . . . . 8 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2524adantr 481 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2610, 25sylibd 238 . . . . . 6 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2726ralrimdva 3154 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
28 simpl1 1191 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐾 ∈ Kol2)
2915, 11ffvelcdmd 7073 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑥) ∈ 𝐾)
3015, 20ffvelcdmd 7073 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑦) ∈ 𝐾)
3113t0sep 22759 . . . . . 6 ((𝐾 ∈ Kol2 ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3228, 29, 30, 31syl12anc 835 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3327, 32syld 47 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝐹𝑥) = (𝐹𝑦)))
34 simpl2 1192 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹:𝑋1-1𝑌)
3515fdmd 6716 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝐽)
36 f1dm 6779 . . . . . . . 8 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
3734, 36syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝑋)
3835, 37eqtr3d 2774 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐽 = 𝑋)
3911, 38eleqtrd 2835 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥𝑋)
4020, 38eleqtrd 2835 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦𝑋)
41 f1fveq 7246 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4234, 39, 40, 41syl12anc 835 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4333, 42sylibd 238 . . 3 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4443ralrimivva 3200 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4512ist0 22755 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
462, 44, 45sylanbrc 583 1 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061   cuni 4902  ccnv 5669  dom cdm 5670  cima 5673   Fn wfn 6528  wf 6529  1-1wf1 6530  cfv 6533  (class class class)co 7394  Topctop 22326   Cn ccn 22659  Kol2ct0 22741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fv 6541  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8807  df-top 22327  df-topon 22344  df-cn 22662  df-t0 22748
This theorem is referenced by:  restt0  22801  sst0  22808  t0hmph  23225
  Copyright terms: Public domain W3C validator