MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt0 Structured version   Visualization version   GIF version

Theorem cnt0 23379
Description: The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnt0 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)

Proof of Theorem cnt0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 23273 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1136 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl3 1194 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 23298 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
53, 4sylan 580 . . . . . . . 8 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
6 eleq2 2830 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑥𝑧𝑥 ∈ (𝐹𝑤)))
7 eleq2 2830 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑦𝑧𝑦 ∈ (𝐹𝑤)))
86, 7bibi12d 345 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
98rspcv 3621 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐽 → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
105, 9syl 17 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
11 simprl 771 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥 𝐽)
12 eqid 2737 . . . . . . . . . . . . . 14 𝐽 = 𝐽
13 eqid 2737 . . . . . . . . . . . . . 14 𝐾 = 𝐾
1412, 13cnf 23279 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
153, 14syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹: 𝐽 𝐾)
1615ffnd 6745 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 Fn 𝐽)
17 elpreima 7085 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1816, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1911, 18mpbirand 707 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝐹𝑥) ∈ 𝑤))
20 simprr 773 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦 𝐽)
21 elpreima 7085 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2216, 21syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2320, 22mpbirand 707 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝐹𝑦) ∈ 𝑤))
2419, 23bibi12d 345 . . . . . . . 8 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2524adantr 480 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2610, 25sylibd 239 . . . . . 6 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2726ralrimdva 3154 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
28 simpl1 1192 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐾 ∈ Kol2)
2915, 11ffvelcdmd 7112 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑥) ∈ 𝐾)
3015, 20ffvelcdmd 7112 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑦) ∈ 𝐾)
3113t0sep 23357 . . . . . 6 ((𝐾 ∈ Kol2 ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3228, 29, 30, 31syl12anc 837 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3327, 32syld 47 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝐹𝑥) = (𝐹𝑦)))
34 simpl2 1193 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹:𝑋1-1𝑌)
3515fdmd 6754 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝐽)
36 f1dm 6816 . . . . . . . 8 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
3734, 36syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝑋)
3835, 37eqtr3d 2779 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐽 = 𝑋)
3911, 38eleqtrd 2843 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥𝑋)
4020, 38eleqtrd 2843 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦𝑋)
41 f1fveq 7289 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4234, 39, 40, 41syl12anc 837 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4333, 42sylibd 239 . . 3 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4443ralrimivva 3202 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4512ist0 23353 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
462, 44, 45sylanbrc 583 1 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061   cuni 4915  ccnv 5692  dom cdm 5693  cima 5696   Fn wfn 6564  wf 6565  1-1wf1 6566  cfv 6569  (class class class)co 7438  Topctop 22924   Cn ccn 23257  Kol2ct0 23339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-map 8876  df-top 22925  df-topon 22942  df-cn 23260  df-t0 23346
This theorem is referenced by:  restt0  23399  sst0  23406  t0hmph  23823
  Copyright terms: Public domain W3C validator