MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0top Structured version   Visualization version   GIF version

Theorem t0top 22478
Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t0top (𝐽 ∈ Kol2 → 𝐽 ∈ Top)

Proof of Theorem t0top
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 𝐽 = 𝐽
21ist0 22469 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
32simplbi 498 1 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2110  wral 3066   cuni 4845  Topctop 22040  Kol2ct0 22455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rab 3075  df-v 3433  df-in 3899  df-ss 3909  df-uni 4846  df-t0 22462
This theorem is referenced by:  restt0  22515  sst0  22522  kqt0  22895  t0hmph  22939  kqhmph  22968  ordtopt0  34627
  Copyright terms: Public domain W3C validator