MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0top Structured version   Visualization version   GIF version

Theorem t0top 22480
Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t0top (𝐽 ∈ Kol2 → 𝐽 ∈ Top)

Proof of Theorem t0top
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 𝐽 = 𝐽
21ist0 22471 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
32simplbi 498 1 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wral 3064   cuni 4839  Topctop 22042  Kol2ct0 22457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840  df-t0 22464
This theorem is referenced by:  restt0  22517  sst0  22524  kqt0  22897  t0hmph  22941  kqhmph  22970  ordtopt0  34631
  Copyright terms: Public domain W3C validator