MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0top Structured version   Visualization version   GIF version

Theorem t0top 23223
Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t0top (𝐽 ∈ Kol2 → 𝐽 ∈ Top)

Proof of Theorem t0top
Dummy variables 𝑥 𝑦 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 𝐽 = 𝐽
21ist0 23214 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
32simplbi 497 1 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3045   cuni 4874  Topctop 22787  Kol2ct0 23200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-ss 3934  df-uni 4875  df-t0 23207
This theorem is referenced by:  restt0  23260  sst0  23267  kqt0  23640  t0hmph  23684  kqhmph  23713  ordtopt0  36437
  Copyright terms: Public domain W3C validator