Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > t0top | Structured version Visualization version GIF version |
Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
t0top | ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ist0 22469 | . 2 ⊢ (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
3 | 2 | simplbi 498 | 1 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2110 ∀wral 3066 ∪ cuni 4845 Topctop 22040 Kol2ct0 22455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-uni 4846 df-t0 22462 |
This theorem is referenced by: restt0 22515 sst0 22522 kqt0 22895 t0hmph 22939 kqhmph 22968 ordtopt0 34627 |
Copyright terms: Public domain | W3C validator |