Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > t0top | Structured version Visualization version GIF version |
Description: A T0 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
t0top | ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ist0 22379 | . 2 ⊢ (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽∀𝑦 ∈ ∪ 𝐽(∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∀wral 3063 ∪ cuni 4836 Topctop 21950 Kol2ct0 22365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-t0 22372 |
This theorem is referenced by: restt0 22425 sst0 22432 kqt0 22805 t0hmph 22849 kqhmph 22878 ordtopt0 34558 |
Copyright terms: Public domain | W3C validator |