MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sst0 Structured version   Visualization version   GIF version

Theorem sst0 21976
Description: A topology finer than a T0 topology is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
sst0 ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ Kol2)

Proof of Theorem sst0
StepHypRef Expression
1 t1sep.1 . 2 𝑋 = 𝐽
2 t0top 21932 . 2 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
3 cnt0 21949 . 2 ((𝐽 ∈ Kol2 ∧ ( I ↾ 𝑋):𝑋1-1𝑋 ∧ ( I ↾ 𝑋) ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ Kol2)
41, 2, 3sshauslem 21975 1 ((𝐽 ∈ Kol2 ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → 𝐾 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2114  wss 3908   cuni 4813   I cid 5436  cres 5534  cfv 6334  TopOnctopon 21513  Kol2ct0 21909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-map 8395  df-top 21497  df-topon 21514  df-cn 21830  df-t0 21916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator