![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqhmph | Structured version Visualization version GIF version |
Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqhmph | β’ (π½ β Kol2 β π½ β (KQβπ½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t0top 23055 | . . . . . 6 β’ (π½ β Kol2 β π½ β Top) | |
2 | toptopon2 22642 | . . . . . 6 β’ (π½ β Top β π½ β (TopOnββͺ π½)) | |
3 | 1, 2 | sylib 217 | . . . . 5 β’ (π½ β Kol2 β π½ β (TopOnββͺ π½)) |
4 | eqid 2730 | . . . . . 6 β’ (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) = (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) | |
5 | 4 | t0kq 23544 | . . . . 5 β’ (π½ β (TopOnββͺ π½) β (π½ β Kol2 β (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) β (π½Homeo(KQβπ½)))) |
6 | 3, 5 | syl 17 | . . . 4 β’ (π½ β Kol2 β (π½ β Kol2 β (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) β (π½Homeo(KQβπ½)))) |
7 | 6 | ibi 266 | . . 3 β’ (π½ β Kol2 β (π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) β (π½Homeo(KQβπ½))) |
8 | hmphi 23503 | . . 3 β’ ((π₯ β βͺ π½ β¦ {π¦ β π½ β£ π₯ β π¦}) β (π½Homeo(KQβπ½)) β π½ β (KQβπ½)) | |
9 | 7, 8 | syl 17 | . 2 β’ (π½ β Kol2 β π½ β (KQβπ½)) |
10 | hmphsym 23508 | . . 3 β’ (π½ β (KQβπ½) β (KQβπ½) β π½) | |
11 | hmphtop1 23505 | . . . 4 β’ (π½ β (KQβπ½) β π½ β Top) | |
12 | kqt0 23472 | . . . 4 β’ (π½ β Top β (KQβπ½) β Kol2) | |
13 | 11, 12 | sylib 217 | . . 3 β’ (π½ β (KQβπ½) β (KQβπ½) β Kol2) |
14 | t0hmph 23516 | . . 3 β’ ((KQβπ½) β π½ β ((KQβπ½) β Kol2 β π½ β Kol2)) | |
15 | 10, 13, 14 | sylc 65 | . 2 β’ (π½ β (KQβπ½) β π½ β Kol2) |
16 | 9, 15 | impbii 208 | 1 β’ (π½ β Kol2 β π½ β (KQβπ½)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β wcel 2104 {crab 3430 βͺ cuni 4909 class class class wbr 5149 β¦ cmpt 5232 βcfv 6544 (class class class)co 7413 Topctop 22617 TopOnctopon 22634 Kol2ct0 23032 KQckq 23419 Homeochmeo 23479 β chmph 23480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-1o 8470 df-map 8826 df-qtop 17459 df-top 22618 df-topon 22635 df-cn 22953 df-t0 23039 df-kq 23420 df-hmeo 23481 df-hmph 23482 |
This theorem is referenced by: ist1-5lem 23546 t1r0 23547 |
Copyright terms: Public domain | W3C validator |