MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqhmph Structured version   Visualization version   GIF version

Theorem kqhmph 23848
Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqhmph (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))

Proof of Theorem kqhmph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t0top 23358 . . . . . 6 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 toptopon2 22945 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . . . . 5 (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2740 . . . . . 6 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54t0kq 23847 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
63, 5syl 17 . . . 4 (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
76ibi 267 . . 3 (𝐽 ∈ Kol2 → (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))
8 hmphi 23806 . . 3 ((𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
97, 8syl 17 . 2 (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽))
10 hmphsym 23811 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
11 hmphtop1 23808 . . . 4 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top)
12 kqt0 23775 . . . 4 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
1311, 12sylib 218 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2)
14 t0hmph 23819 . . 3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1510, 13, 14sylc 65 . 2 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2)
169, 15impbii 209 1 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  {crab 3443   cuni 4931   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  Topctop 22920  TopOnctopon 22937  Kol2ct0 23335  KQckq 23722  Homeochmeo 23782  chmph 23783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-qtop 17567  df-top 22921  df-topon 22938  df-cn 23256  df-t0 23342  df-kq 23723  df-hmeo 23784  df-hmph 23785
This theorem is referenced by:  ist1-5lem  23849  t1r0  23850
  Copyright terms: Public domain W3C validator