MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqhmph Structured version   Visualization version   GIF version

Theorem kqhmph 23713
Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqhmph (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))

Proof of Theorem kqhmph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t0top 23223 . . . . . 6 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 toptopon2 22812 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . . . . 5 (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2730 . . . . . 6 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54t0kq 23712 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
63, 5syl 17 . . . 4 (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
76ibi 267 . . 3 (𝐽 ∈ Kol2 → (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))
8 hmphi 23671 . . 3 ((𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
97, 8syl 17 . 2 (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽))
10 hmphsym 23676 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
11 hmphtop1 23673 . . . 4 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top)
12 kqt0 23640 . . . 4 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
1311, 12sylib 218 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2)
14 t0hmph 23684 . . 3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1510, 13, 14sylc 65 . 2 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2)
169, 15impbii 209 1 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  {crab 3408   cuni 4874   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  Topctop 22787  TopOnctopon 22804  Kol2ct0 23200  KQckq 23587  Homeochmeo 23647  chmph 23648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-qtop 17477  df-top 22788  df-topon 22805  df-cn 23121  df-t0 23207  df-kq 23588  df-hmeo 23649  df-hmph 23650
This theorem is referenced by:  ist1-5lem  23714  t1r0  23715
  Copyright terms: Public domain W3C validator