| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqhmph | Structured version Visualization version GIF version | ||
| Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqhmph | ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0top 23223 | . . . . . 6 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
| 2 | toptopon2 22812 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | eqid 2730 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | t0kq 23712 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))) |
| 7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Kol2 → (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))) |
| 8 | hmphi 23671 | . . 3 ⊢ ((𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽)) |
| 10 | hmphsym 23676 | . . 3 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
| 11 | hmphtop1 23673 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top) | |
| 12 | kqt0 23640 | . . . 4 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2) |
| 14 | t0hmph 23684 | . . 3 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2)) | |
| 15 | 10, 13, 14 | sylc 65 | . 2 ⊢ (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2) |
| 16 | 9, 15 | impbii 209 | 1 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 {crab 3408 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Topctop 22787 TopOnctopon 22804 Kol2ct0 23200 KQckq 23587 Homeochmeo 23647 ≃ chmph 23648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-map 8804 df-qtop 17477 df-top 22788 df-topon 22805 df-cn 23121 df-t0 23207 df-kq 23588 df-hmeo 23649 df-hmph 23650 |
| This theorem is referenced by: ist1-5lem 23714 t1r0 23715 |
| Copyright terms: Public domain | W3C validator |