| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqhmph | Structured version Visualization version GIF version | ||
| Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqhmph | ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0top 23239 | . . . . . 6 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
| 2 | toptopon2 22828 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | eqid 2731 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | t0kq 23728 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))) |
| 7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Kol2 → (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))) |
| 8 | hmphi 23687 | . . 3 ⊢ ((𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽)) |
| 10 | hmphsym 23692 | . . 3 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
| 11 | hmphtop1 23689 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top) | |
| 12 | kqt0 23656 | . . . 4 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2) |
| 14 | t0hmph 23700 | . . 3 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2)) | |
| 15 | 10, 13, 14 | sylc 65 | . 2 ⊢ (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2) |
| 16 | 9, 15 | impbii 209 | 1 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 {crab 3395 ∪ cuni 4854 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 Topctop 22803 TopOnctopon 22820 Kol2ct0 23216 KQckq 23603 Homeochmeo 23663 ≃ chmph 23664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-1o 8380 df-map 8747 df-qtop 17406 df-top 22804 df-topon 22821 df-cn 23137 df-t0 23223 df-kq 23604 df-hmeo 23665 df-hmph 23666 |
| This theorem is referenced by: ist1-5lem 23730 t1r0 23731 |
| Copyright terms: Public domain | W3C validator |