MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqhmph Structured version   Visualization version   GIF version

Theorem kqhmph 23827
Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqhmph (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))

Proof of Theorem kqhmph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t0top 23337 . . . . . 6 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 toptopon2 22924 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 218 . . . . 5 (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2737 . . . . . 6 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54t0kq 23826 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
63, 5syl 17 . . . 4 (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
76ibi 267 . . 3 (𝐽 ∈ Kol2 → (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))
8 hmphi 23785 . . 3 ((𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
97, 8syl 17 . 2 (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽))
10 hmphsym 23790 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
11 hmphtop1 23787 . . . 4 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top)
12 kqt0 23754 . . . 4 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
1311, 12sylib 218 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2)
14 t0hmph 23798 . . 3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1510, 13, 14sylc 65 . 2 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2)
169, 15impbii 209 1 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  {crab 3436   cuni 4907   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  Topctop 22899  TopOnctopon 22916  Kol2ct0 23314  KQckq 23701  Homeochmeo 23761  chmph 23762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-1o 8506  df-map 8868  df-qtop 17552  df-top 22900  df-topon 22917  df-cn 23235  df-t0 23321  df-kq 23702  df-hmeo 23763  df-hmph 23764
This theorem is referenced by:  ist1-5lem  23828  t1r0  23829
  Copyright terms: Public domain W3C validator