MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqhmph Structured version   Visualization version   GIF version

Theorem kqhmph 22427
Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqhmph (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))

Proof of Theorem kqhmph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 t0top 21937 . . . . . 6 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 toptopon2 21526 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
31, 2sylib 220 . . . . 5 (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘ 𝐽))
4 eqid 2821 . . . . . 6 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
54t0kq 22426 . . . . 5 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
63, 5syl 17 . . . 4 (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))))
76ibi 269 . . 3 (𝐽 ∈ Kol2 → (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))
8 hmphi 22385 . . 3 ((𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽))
97, 8syl 17 . 2 (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽))
10 hmphsym 22390 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽)
11 hmphtop1 22387 . . . 4 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top)
12 kqt0 22354 . . . 4 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
1311, 12sylib 220 . . 3 (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2)
14 t0hmph 22398 . . 3 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2))
1510, 13, 14sylc 65 . 2 (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2)
169, 15impbii 211 1 (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wcel 2114  {crab 3142   cuni 4838   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  Topctop 21501  TopOnctopon 21518  Kol2ct0 21914  KQckq 22301  Homeochmeo 22361  chmph 22362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-1o 8102  df-map 8408  df-qtop 16780  df-top 21502  df-topon 21519  df-cn 21835  df-t0 21921  df-kq 22302  df-hmeo 22363  df-hmph 22364
This theorem is referenced by:  ist1-5lem  22428  t1r0  22429
  Copyright terms: Public domain W3C validator