| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqhmph | Structured version Visualization version GIF version | ||
| Description: A topological space is T0 iff it is homeomorphic to its Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqhmph | ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0top 23192 | . . . . . 6 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
| 2 | toptopon2 22781 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 5 | 4 | t0kq 23681 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (𝐽 ∈ Kol2 ↔ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))) |
| 6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝐽 ∈ Kol2 → (𝐽 ∈ Kol2 ↔ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)))) |
| 7 | 6 | ibi 267 | . . 3 ⊢ (𝐽 ∈ Kol2 → (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽))) |
| 8 | hmphi 23640 | . . 3 ⊢ ((𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) ∈ (𝐽Homeo(KQ‘𝐽)) → 𝐽 ≃ (KQ‘𝐽)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ≃ (KQ‘𝐽)) |
| 10 | hmphsym 23645 | . . 3 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ≃ 𝐽) | |
| 11 | hmphtop1 23642 | . . . 4 ⊢ (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Top) | |
| 12 | kqt0 23609 | . . . 4 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) | |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝐽 ≃ (KQ‘𝐽) → (KQ‘𝐽) ∈ Kol2) |
| 14 | t0hmph 23653 | . . 3 ⊢ ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Kol2)) | |
| 15 | 10, 13, 14 | sylc 65 | . 2 ⊢ (𝐽 ≃ (KQ‘𝐽) → 𝐽 ∈ Kol2) |
| 16 | 9, 15 | impbii 209 | 1 ⊢ (𝐽 ∈ Kol2 ↔ 𝐽 ≃ (KQ‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 {crab 3402 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Topctop 22756 TopOnctopon 22773 Kol2ct0 23169 KQckq 23556 Homeochmeo 23616 ≃ chmph 23617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-1o 8411 df-map 8778 df-qtop 17446 df-top 22757 df-topon 22774 df-cn 23090 df-t0 23176 df-kq 23557 df-hmeo 23618 df-hmph 23619 |
| This theorem is referenced by: ist1-5lem 23683 t1r0 23684 |
| Copyright terms: Public domain | W3C validator |