| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ist0.1 | . . . . . . 7
⊢ 𝑋 = ∪
𝐽 | 
| 2 | 1 | ishaus 23330 | . . . . . 6
⊢ (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | 
| 3 | 2 | simprbi 496 | . . . . 5
⊢ (𝐽 ∈ Haus →
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | 
| 4 |  | neeq1 3003 | . . . . . . 7
⊢ (𝑥 = 𝑃 → (𝑥 ≠ 𝑦 ↔ 𝑃 ≠ 𝑦)) | 
| 5 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛)) | 
| 6 | 5 | 3anbi1d 1442 | . . . . . . . 8
⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | 
| 7 | 6 | 2rexbidv 3222 | . . . . . . 7
⊢ (𝑥 = 𝑃 → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | 
| 8 | 4, 7 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = 𝑃 → ((𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ↔ (𝑃 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | 
| 9 |  | neeq2 3004 | . . . . . . 7
⊢ (𝑦 = 𝑄 → (𝑃 ≠ 𝑦 ↔ 𝑃 ≠ 𝑄)) | 
| 10 |  | eleq1 2829 | . . . . . . . . 9
⊢ (𝑦 = 𝑄 → (𝑦 ∈ 𝑚 ↔ 𝑄 ∈ 𝑚)) | 
| 11 | 10 | 3anbi2d 1443 | . . . . . . . 8
⊢ (𝑦 = 𝑄 → ((𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | 
| 12 | 11 | 2rexbidv 3222 | . . . . . . 7
⊢ (𝑦 = 𝑄 → (∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) ↔ ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))) | 
| 13 | 9, 12 | imbi12d 344 | . . . . . 6
⊢ (𝑦 = 𝑄 → ((𝑃 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) ↔ (𝑃 ≠ 𝑄 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | 
| 14 | 8, 13 | rspc2v 3633 | . . . . 5
⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) → (𝑃 ≠ 𝑄 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | 
| 15 | 3, 14 | syl5 34 | . . . 4
⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → (𝐽 ∈ Haus → (𝑃 ≠ 𝑄 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | 
| 16 | 15 | ex 412 | . . 3
⊢ (𝑃 ∈ 𝑋 → (𝑄 ∈ 𝑋 → (𝐽 ∈ Haus → (𝑃 ≠ 𝑄 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))))) | 
| 17 | 16 | com3r 87 | . 2
⊢ (𝐽 ∈ Haus → (𝑃 ∈ 𝑋 → (𝑄 ∈ 𝑋 → (𝑃 ≠ 𝑄 → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))))) | 
| 18 | 17 | 3imp2 1350 | 1
⊢ ((𝐽 ∈ Haus ∧ (𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑃 ≠ 𝑄)) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |