MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausnei Structured version   Visualization version   GIF version

Theorem hausnei 22702
Description: Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
hausnei ((𝐽 ∈ Haus ∧ (𝑃𝑋𝑄𝑋𝑃𝑄)) → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅))
Distinct variable groups:   𝑚,𝑛,𝐽   𝑃,𝑚,𝑛   𝑄,𝑚,𝑛
Allowed substitution hints:   𝑋(𝑚,𝑛)

Proof of Theorem hausnei
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ist0.1 . . . . . . 7 𝑋 = 𝐽
21ishaus 22696 . . . . . 6 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
32simprbi 498 . . . . 5 (𝐽 ∈ Haus → ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
4 neeq1 3003 . . . . . . 7 (𝑥 = 𝑃 → (𝑥𝑦𝑃𝑦))
5 eleq1 2822 . . . . . . . . 9 (𝑥 = 𝑃 → (𝑥𝑛𝑃𝑛))
653anbi1d 1441 . . . . . . . 8 (𝑥 = 𝑃 → ((𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑃𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
762rexbidv 3210 . . . . . . 7 (𝑥 = 𝑃 → (∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
84, 7imbi12d 345 . . . . . 6 (𝑥 = 𝑃 → ((𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑃𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
9 neeq2 3004 . . . . . . 7 (𝑦 = 𝑄 → (𝑃𝑦𝑃𝑄))
10 eleq1 2822 . . . . . . . . 9 (𝑦 = 𝑄 → (𝑦𝑚𝑄𝑚))
11103anbi2d 1442 . . . . . . . 8 (𝑦 = 𝑄 → ((𝑃𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅)))
12112rexbidv 3210 . . . . . . 7 (𝑦 = 𝑄 → (∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅)))
139, 12imbi12d 345 . . . . . 6 (𝑦 = 𝑄 → ((𝑃𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑃𝑄 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅))))
148, 13rspc2v 3592 . . . . 5 ((𝑃𝑋𝑄𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) → (𝑃𝑄 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅))))
153, 14syl5 34 . . . 4 ((𝑃𝑋𝑄𝑋) → (𝐽 ∈ Haus → (𝑃𝑄 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅))))
1615ex 414 . . 3 (𝑃𝑋 → (𝑄𝑋 → (𝐽 ∈ Haus → (𝑃𝑄 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅)))))
1716com3r 87 . 2 (𝐽 ∈ Haus → (𝑃𝑋 → (𝑄𝑋 → (𝑃𝑄 → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅)))))
18173imp2 1350 1 ((𝐽 ∈ Haus ∧ (𝑃𝑋𝑄𝑋𝑃𝑄)) → ∃𝑛𝐽𝑚𝐽 (𝑃𝑛𝑄𝑚 ∧ (𝑛𝑚) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  cin 3913  c0 4286   cuni 4869  Topctop 22265  Hauscha 22682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-in 3921  df-ss 3931  df-uni 4870  df-haus 22689
This theorem is referenced by:  haust1  22726  cnhaus  22728  lmmo  22754  hauscmplem  22780  pthaus  23012  txhaus  23021  xkohaus  23027  hausflimi  23354  hauspwpwf1  23361
  Copyright terms: Public domain W3C validator