Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqt0 | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqt0 | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toptopon2 21633 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
2 | eqid 2759 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
3 | 2 | kqt0lem 22451 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ Kol2) |
4 | 1, 3 | sylbi 220 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Kol2) |
5 | t0top 22044 | . . 3 ⊢ ((KQ‘𝐽) ∈ Kol2 → (KQ‘𝐽) ∈ Top) | |
6 | kqtop 22460 | . . 3 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
7 | 5, 6 | sylibr 237 | . 2 ⊢ ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Top) |
8 | 4, 7 | impbii 212 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2112 {crab 3075 ∪ cuni 4802 ↦ cmpt 5117 ‘cfv 6341 Topctop 21608 TopOnctopon 21625 Kol2ct0 22021 KQckq 22408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-qtop 16853 df-top 21609 df-topon 21626 df-t0 22028 df-kq 22409 |
This theorem is referenced by: kqf 22462 kqhmph 22534 |
Copyright terms: Public domain | W3C validator |