| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kqt0 | Structured version Visualization version GIF version | ||
| Description: The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| kqt0 | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toptopon2 22843 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 2 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
| 3 | 2 | kqt0lem 23661 | . . 3 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ Kol2) |
| 4 | 1, 3 | sylbi 217 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Kol2) |
| 5 | t0top 23254 | . . 3 ⊢ ((KQ‘𝐽) ∈ Kol2 → (KQ‘𝐽) ∈ Top) | |
| 6 | kqtop 23670 | . . 3 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) | |
| 7 | 5, 6 | sylibr 234 | . 2 ⊢ ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Top) |
| 8 | 4, 7 | impbii 209 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 {crab 3397 ∪ cuni 4860 ↦ cmpt 5176 ‘cfv 6489 Topctop 22818 TopOnctopon 22835 Kol2ct0 23231 KQckq 23618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-qtop 17421 df-top 22819 df-topon 22836 df-t0 23238 df-kq 23619 |
| This theorem is referenced by: kqf 23672 kqhmph 23744 |
| Copyright terms: Public domain | W3C validator |