MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0 Structured version   Visualization version   GIF version

Theorem kqt0 22897
Description: The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqt0 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)

Proof of Theorem kqt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22067 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 eqid 2738 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
32kqt0lem 22887 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (KQ‘𝐽) ∈ Kol2)
41, 3sylbi 216 . 2 (𝐽 ∈ Top → (KQ‘𝐽) ∈ Kol2)
5 t0top 22480 . . 3 ((KQ‘𝐽) ∈ Kol2 → (KQ‘𝐽) ∈ Top)
6 kqtop 22896 . . 3 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
75, 6sylibr 233 . 2 ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Top)
84, 7impbii 208 1 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  {crab 3068   cuni 4839  cmpt 5157  cfv 6433  Topctop 22042  TopOnctopon 22059  Kol2ct0 22457  KQckq 22844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-qtop 17218  df-top 22043  df-topon 22060  df-t0 22464  df-kq 22845
This theorem is referenced by:  kqf  22898  kqhmph  22970
  Copyright terms: Public domain W3C validator