MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0 Structured version   Visualization version   GIF version

Theorem kqt0 23754
Description: The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqt0 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)

Proof of Theorem kqt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22924 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 eqid 2737 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
32kqt0lem 23744 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (KQ‘𝐽) ∈ Kol2)
41, 3sylbi 217 . 2 (𝐽 ∈ Top → (KQ‘𝐽) ∈ Kol2)
5 t0top 23337 . . 3 ((KQ‘𝐽) ∈ Kol2 → (KQ‘𝐽) ∈ Top)
6 kqtop 23753 . . 3 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
75, 6sylibr 234 . 2 ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Top)
84, 7impbii 209 1 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  {crab 3436   cuni 4907  cmpt 5225  cfv 6561  Topctop 22899  TopOnctopon 22916  Kol2ct0 23314  KQckq 23701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17552  df-top 22900  df-topon 22917  df-t0 23321  df-kq 23702
This theorem is referenced by:  kqf  23755  kqhmph  23827
  Copyright terms: Public domain W3C validator