MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqt0 Structured version   Visualization version   GIF version

Theorem kqt0 23775
Description: The Kolmogorov quotient is T0 even if the original topology is not. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
kqt0 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)

Proof of Theorem kqt0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22945 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2 eqid 2740 . . . 4 (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})
32kqt0lem 23765 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (KQ‘𝐽) ∈ Kol2)
41, 3sylbi 217 . 2 (𝐽 ∈ Top → (KQ‘𝐽) ∈ Kol2)
5 t0top 23358 . . 3 ((KQ‘𝐽) ∈ Kol2 → (KQ‘𝐽) ∈ Top)
6 kqtop 23774 . . 3 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top)
75, 6sylibr 234 . 2 ((KQ‘𝐽) ∈ Kol2 → 𝐽 ∈ Top)
84, 7impbii 209 1 (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  {crab 3443   cuni 4931  cmpt 5249  cfv 6573  Topctop 22920  TopOnctopon 22937  Kol2ct0 23335  KQckq 23722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-qtop 17567  df-top 22921  df-topon 22938  df-t0 23342  df-kq 23723
This theorem is referenced by:  kqf  23776  kqhmph  23848
  Copyright terms: Public domain W3C validator