![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t0hmph | Structured version Visualization version GIF version |
Description: T0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
t0hmph | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t0top 22814 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
2 | cnt0 22831 | . 2 ⊢ ((𝐽 ∈ Kol2 ∧ 𝑓:∪ 𝐾–1-1→∪ 𝐽 ∧ 𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ Kol2) | |
3 | 1, 2 | haushmphlem 23272 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∪ cuni 4906 class class class wbr 5146 Kol2ct0 22791 ≃ chmph 23239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7969 df-2nd 7970 df-1o 8460 df-map 8817 df-top 22377 df-topon 22394 df-cn 22712 df-t0 22798 df-hmeo 23240 df-hmph 23241 |
This theorem is referenced by: t0kq 23303 kqhmph 23304 |
Copyright terms: Public domain | W3C validator |