MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0hmph Structured version   Visualization version   GIF version

Theorem t0hmph 21919
Description: T0 is a topological property. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
t0hmph (𝐽𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2))

Proof of Theorem t0hmph
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 t0top 21459 . 2 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
2 cnt0 21476 . 2 ((𝐽 ∈ Kol2 ∧ 𝑓: 𝐾1-1 𝐽𝑓 ∈ (𝐾 Cn 𝐽)) → 𝐾 ∈ Kol2)
31, 2haushmphlem 21916 1 (𝐽𝐾 → (𝐽 ∈ Kol2 → 𝐾 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   cuni 4626   class class class wbr 4841  Kol2ct0 21436  chmph 21883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-1st 7399  df-2nd 7400  df-1o 7797  df-map 8095  df-top 21024  df-topon 21041  df-cn 21357  df-t0 21443  df-hmeo 21884  df-hmph 21885
This theorem is referenced by:  t0kq  21947  kqhmph  21948
  Copyright terms: Public domain W3C validator