MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1top Structured version   Visualization version   GIF version

Theorem t1top 23233
Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1top (𝐽 ∈ Fre → 𝐽 ∈ Top)

Proof of Theorem t1top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . 3 𝐽 = 𝐽
21ist1 23224 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
32simplbi 497 1 (𝐽 ∈ Fre → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wral 3058  {csn 4629   cuni 4908  cfv 6548  Topctop 22794  Clsdccld 22919  Frect1 23210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-iota 6500  df-fv 6556  df-t1 23217
This theorem is referenced by:  t1t0  23251  lpcls  23267  perfcls  23268  restt1  23270  t1sep2  23272  sst1  23277  t1connperf  23339  t1hmph  23694  qtopt1  33436  onint1  35933
  Copyright terms: Public domain W3C validator