Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > t1top | Structured version Visualization version GIF version |
Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
t1top | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ist1 22035 | . 2 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽))) |
3 | 2 | simplbi 501 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3070 {csn 4525 ∪ cuni 4801 ‘cfv 6340 Topctop 21607 Clsdccld 21730 Frect1 22021 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-t1 22028 |
This theorem is referenced by: t1t0 22062 lpcls 22078 perfcls 22079 restt1 22081 t1sep2 22083 sst1 22088 t1connperf 22150 t1hmph 22505 qtopt1 31319 onint1 34222 |
Copyright terms: Public domain | W3C validator |