MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1top Structured version   Visualization version   GIF version

Theorem t1top 23268
Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1top (𝐽 ∈ Fre → 𝐽 ∈ Top)

Proof of Theorem t1top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 𝐽 = 𝐽
21ist1 23259 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
32simplbi 497 1 (𝐽 ∈ Fre → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3051  {csn 4601   cuni 4883  cfv 6531  Topctop 22831  Clsdccld 22954  Frect1 23245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-t1 23252
This theorem is referenced by:  t1t0  23286  lpcls  23302  perfcls  23303  restt1  23305  t1sep2  23307  sst1  23312  t1connperf  23374  t1hmph  23729  qtopt1  33866  onint1  36467
  Copyright terms: Public domain W3C validator