![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > t1top | Structured version Visualization version GIF version |
Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
Ref | Expression |
---|---|
t1top | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | ist1 23350 | . 2 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽))) |
3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 {csn 4648 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 Frect1 23336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-t1 23343 |
This theorem is referenced by: t1t0 23377 lpcls 23393 perfcls 23394 restt1 23396 t1sep2 23398 sst1 23403 t1connperf 23465 t1hmph 23820 qtopt1 33781 onint1 36415 |
Copyright terms: Public domain | W3C validator |