MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1top Structured version   Visualization version   GIF version

Theorem t1top 23217
Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1top (𝐽 ∈ Fre → 𝐽 ∈ Top)

Proof of Theorem t1top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 𝐽 = 𝐽
21ist1 23208 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
32simplbi 497 1 (𝐽 ∈ Fre → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  {csn 4589   cuni 4871  cfv 6511  Topctop 22780  Clsdccld 22903  Frect1 23194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-t1 23201
This theorem is referenced by:  t1t0  23235  lpcls  23251  perfcls  23252  restt1  23254  t1sep2  23256  sst1  23261  t1connperf  23323  t1hmph  23678  qtopt1  33825  onint1  36437
  Copyright terms: Public domain W3C validator