MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1top Structured version   Visualization version   GIF version

Theorem t1top 23359
Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
t1top (𝐽 ∈ Fre → 𝐽 ∈ Top)

Proof of Theorem t1top
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 𝐽 = 𝐽
21ist1 23350 . 2 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽{𝑥} ∈ (Clsd‘𝐽)))
32simplbi 497 1 (𝐽 ∈ Fre → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3067  {csn 4648   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045  Frect1 23336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-t1 23343
This theorem is referenced by:  t1t0  23377  lpcls  23393  perfcls  23394  restt1  23396  t1sep2  23398  sst1  23403  t1connperf  23465  t1hmph  23820  qtopt1  33781  onint1  36415
  Copyright terms: Public domain W3C validator