| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1top | Structured version Visualization version GIF version | ||
| Description: A T1 space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| t1top | ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | ist1 23206 | . 2 ⊢ (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ ∪ 𝐽{𝑥} ∈ (Clsd‘𝐽))) |
| 3 | 2 | simplbi 497 | 1 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 {csn 4577 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 Clsdccld 22901 Frect1 23192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-t1 23199 |
| This theorem is referenced by: t1t0 23233 lpcls 23249 perfcls 23250 restt1 23252 t1sep2 23254 sst1 23259 t1connperf 23321 t1hmph 23676 qtopt1 33818 onint1 36443 |
| Copyright terms: Public domain | W3C validator |