Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtopt0 Structured version   Visualization version   GIF version

Theorem ordtopt0 36408
Description: An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.)
Assertion
Ref Expression
ordtopt0 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2))

Proof of Theorem ordtopt0
StepHypRef Expression
1 ordtop 36402 . . 3 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
2 onsuct0 36407 . . . 4 ( 𝐽 ∈ On → suc 𝐽 ∈ Kol2)
32ordtoplem 36401 . . 3 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Kol2))
41, 3sylbid 240 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Kol2))
5 t0top 23358 . 2 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
64, 5impbid1 225 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wne 2946   cuni 4931  Ord word 6394  Topctop 22920  Kol2ct0 23335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-t0 23342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator