Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtopt0 Structured version   Visualization version   GIF version

Theorem ordtopt0 36465
Description: An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.)
Assertion
Ref Expression
ordtopt0 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2))

Proof of Theorem ordtopt0
StepHypRef Expression
1 ordtop 36459 . . 3 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 𝐽))
2 onsuct0 36464 . . . 4 ( 𝐽 ∈ On → suc 𝐽 ∈ Kol2)
32ordtoplem 36458 . . 3 (Ord 𝐽 → (𝐽 𝐽𝐽 ∈ Kol2))
41, 3sylbid 240 . 2 (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Kol2))
5 t0top 23272 . 2 (𝐽 ∈ Kol2 → 𝐽 ∈ Top)
64, 5impbid1 225 1 (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wne 2933   cuni 4888  Ord word 6356  Topctop 22836  Kol2ct0 23249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fv 6544  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-t0 23256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator