| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtopt0 | Structured version Visualization version GIF version | ||
| Description: An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| ordtopt0 | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtop 36501 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) | |
| 2 | onsuct0 36506 | . . . 4 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Kol2) | |
| 3 | 2 | ordtoplem 36500 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Kol2)) |
| 4 | 1, 3 | sylbid 240 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Kol2)) |
| 5 | t0top 23245 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
| 6 | 4, 5 | impbid1 225 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ≠ wne 2929 ∪ cuni 4858 Ord word 6310 Topctop 22809 Kol2ct0 23222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17349 df-top 22810 df-topon 22827 df-bases 22862 df-t0 23229 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |