![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtopt0 | Structured version Visualization version GIF version |
Description: An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.) |
Ref | Expression |
---|---|
ordtopt0 | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtop 32943 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) | |
2 | onsuct0 32948 | . . . 4 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Kol2) | |
3 | 2 | ordtoplem 32942 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Kol2)) |
4 | 1, 3 | sylbid 232 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Kol2)) |
5 | t0top 21462 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
6 | 4, 5 | impbid1 217 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∈ wcel 2157 ≠ wne 2971 ∪ cuni 4628 Ord word 5940 Topctop 21026 Kol2ct0 21439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-ord 5944 df-on 5945 df-suc 5947 df-iota 6064 df-fun 6103 df-fv 6109 df-topgen 16419 df-top 21027 df-topon 21044 df-bases 21079 df-t0 21446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |