| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordtopt0 | Structured version Visualization version GIF version | ||
| Description: An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.) |
| Ref | Expression |
|---|---|
| ordtopt0 | ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtop 36424 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽)) | |
| 2 | onsuct0 36429 | . . . 4 ⊢ (∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Kol2) | |
| 3 | 2 | ordtoplem 36423 | . . 3 ⊢ (Ord 𝐽 → (𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Kol2)) |
| 4 | 1, 3 | sylbid 240 | . 2 ⊢ (Ord 𝐽 → (𝐽 ∈ Top → 𝐽 ∈ Kol2)) |
| 5 | t0top 23216 | . 2 ⊢ (𝐽 ∈ Kol2 → 𝐽 ∈ Top) | |
| 6 | 4, 5 | impbid1 225 | 1 ⊢ (Ord 𝐽 → (𝐽 ∈ Top ↔ 𝐽 ∈ Kol2)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 ∪ cuni 4871 Ord word 6331 Topctop 22780 Kol2ct0 23193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fv 6519 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-t0 23200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |