MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtrg Structured version   Visualization version   GIF version

Theorem tlmtrg 23439
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmtrg (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)

Proof of Theorem tlmtrg
StepHypRef Expression
1 eqid 2736 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2736 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
4 eqid 2736 . . . 4 (TopOpen‘𝐹) = (TopOpen‘𝐹)
51, 2, 3, 4istlm 23434 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 498 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing))
76simp3d 1143 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cfv 6473  (class class class)co 7329  Scalarcsca 17054  TopOpenctopn 17221  LModclmod 20221   ·sf cscaf 20222   Cn ccn 22473   ×t ctx 22809  TopMndctmd 23319  TopRingctrg 23405  TopModctlm 23407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-iota 6425  df-fv 6481  df-ov 7332  df-tlm 23411
This theorem is referenced by:  tlmscatps  23440
  Copyright terms: Public domain W3C validator