MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtrg Structured version   Visualization version   GIF version

Theorem tlmtrg 24083
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmtrg (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)

Proof of Theorem tlmtrg
StepHypRef Expression
1 eqid 2730 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2730 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
4 eqid 2730 . . . 4 (TopOpen‘𝐹) = (TopOpen‘𝐹)
51, 2, 3, 4istlm 24078 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 497 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing))
76simp3d 1144 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  Scalarcsca 17229  TopOpenctopn 17390  LModclmod 20772   ·sf cscaf 20773   Cn ccn 23117   ×t ctx 23453  TopMndctmd 23963  TopRingctrg 24049  TopModctlm 24051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-tlm 24055
This theorem is referenced by:  tlmscatps  24084
  Copyright terms: Public domain W3C validator