MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtrg Structured version   Visualization version   GIF version

Theorem tlmtrg 24100
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmtrg (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)

Proof of Theorem tlmtrg
StepHypRef Expression
1 eqid 2731 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2731 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
4 eqid 2731 . . . 4 (TopOpen‘𝐹) = (TopOpen‘𝐹)
51, 2, 3, 4istlm 24095 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 497 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing))
76simp3d 1144 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Scalarcsca 17159  TopOpenctopn 17320  LModclmod 20788   ·sf cscaf 20789   Cn ccn 23134   ×t ctx 23470  TopMndctmd 23980  TopRingctrg 24066  TopModctlm 24068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-tlm 24072
This theorem is referenced by:  tlmscatps  24101
  Copyright terms: Public domain W3C validator