![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tlmtrg | Structured version Visualization version GIF version |
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
tlmtrg | β’ (π β TopMod β πΉ β TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ ( Β·sf βπ) = ( Β·sf βπ) | |
2 | eqid 2732 | . . . 4 β’ (TopOpenβπ) = (TopOpenβπ) | |
3 | tlmtrg.f | . . . 4 β’ πΉ = (Scalarβπ) | |
4 | eqid 2732 | . . . 4 β’ (TopOpenβπΉ) = (TopOpenβπΉ) | |
5 | 1, 2, 3, 4 | istlm 23688 | . . 3 β’ (π β TopMod β ((π β TopMnd β§ π β LMod β§ πΉ β TopRing) β§ ( Β·sf βπ) β (((TopOpenβπΉ) Γt (TopOpenβπ)) Cn (TopOpenβπ)))) |
6 | 5 | simplbi 498 | . 2 β’ (π β TopMod β (π β TopMnd β§ π β LMod β§ πΉ β TopRing)) |
7 | 6 | simp3d 1144 | 1 β’ (π β TopMod β πΉ β TopRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7408 Scalarcsca 17199 TopOpenctopn 17366 LModclmod 20470 Β·sf cscaf 20471 Cn ccn 22727 Γt ctx 23063 TopMndctmd 23573 TopRingctrg 23659 TopModctlm 23661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-tlm 23665 |
This theorem is referenced by: tlmscatps 23694 |
Copyright terms: Public domain | W3C validator |