MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtrg Structured version   Visualization version   GIF version

Theorem tlmtrg 23693
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
tlmtrg (π‘Š ∈ TopMod β†’ 𝐹 ∈ TopRing)

Proof of Theorem tlmtrg
StepHypRef Expression
1 eqid 2732 . . . 4 ( Β·sf β€˜π‘Š) = ( Β·sf β€˜π‘Š)
2 eqid 2732 . . . 4 (TopOpenβ€˜π‘Š) = (TopOpenβ€˜π‘Š)
3 tlmtrg.f . . . 4 𝐹 = (Scalarβ€˜π‘Š)
4 eqid 2732 . . . 4 (TopOpenβ€˜πΉ) = (TopOpenβ€˜πΉ)
51, 2, 3, 4istlm 23688 . . 3 (π‘Š ∈ TopMod ↔ ((π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( Β·sf β€˜π‘Š) ∈ (((TopOpenβ€˜πΉ) Γ—t (TopOpenβ€˜π‘Š)) Cn (TopOpenβ€˜π‘Š))))
65simplbi 498 . 2 (π‘Š ∈ TopMod β†’ (π‘Š ∈ TopMnd ∧ π‘Š ∈ LMod ∧ 𝐹 ∈ TopRing))
76simp3d 1144 1 (π‘Š ∈ TopMod β†’ 𝐹 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7408  Scalarcsca 17199  TopOpenctopn 17366  LModclmod 20470   Β·sf cscaf 20471   Cn ccn 22727   Γ—t ctx 23063  TopMndctmd 23573  TopRingctrg 23659  TopModctlm 23661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7411  df-tlm 23665
This theorem is referenced by:  tlmscatps  23694
  Copyright terms: Public domain W3C validator