![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tlmtrg | Structured version Visualization version GIF version |
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
tlmtrg | ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
2 | eqid 2737 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
3 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | eqid 2737 | . . . 4 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
5 | 1, 2, 3, 4 | istlm 24218 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
6 | 5 | simplbi 497 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing)) |
7 | 6 | simp3d 1145 | 1 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 Scalarcsca 17310 TopOpenctopn 17477 LModclmod 20884 ·sf cscaf 20885 Cn ccn 23257 ×t ctx 23593 TopMndctmd 24103 TopRingctrg 24189 TopModctlm 24191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-ov 7441 df-tlm 24195 |
This theorem is referenced by: tlmscatps 24224 |
Copyright terms: Public domain | W3C validator |