| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tlmtrg | Structured version Visualization version GIF version | ||
| Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| tlmtrg | ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
| 2 | eqid 2731 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
| 3 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | eqid 2731 | . . . 4 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
| 5 | 1, 2, 3, 4 | istlm 24095 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing)) |
| 7 | 6 | simp3d 1144 | 1 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Scalarcsca 17159 TopOpenctopn 17320 LModclmod 20788 ·sf cscaf 20789 Cn ccn 23134 ×t ctx 23470 TopMndctmd 23980 TopRingctrg 24066 TopModctlm 24068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-tlm 24072 |
| This theorem is referenced by: tlmscatps 24101 |
| Copyright terms: Public domain | W3C validator |