MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtrg Structured version   Visualization version   GIF version

Theorem tlmtrg 24223
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmtrg (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)

Proof of Theorem tlmtrg
StepHypRef Expression
1 eqid 2737 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2737 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 tlmtrg.f . . . 4 𝐹 = (Scalar‘𝑊)
4 eqid 2737 . . . 4 (TopOpen‘𝐹) = (TopOpen‘𝐹)
51, 2, 3, 4istlm 24218 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 497 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing))
76simp3d 1145 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  Scalarcsca 17310  TopOpenctopn 17477  LModclmod 20884   ·sf cscaf 20885   Cn ccn 23257   ×t ctx 23593  TopMndctmd 24103  TopRingctrg 24189  TopModctlm 24191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-iota 6522  df-fv 6577  df-ov 7441  df-tlm 24195
This theorem is referenced by:  tlmscatps  24224
  Copyright terms: Public domain W3C validator