Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tlmtrg | Structured version Visualization version GIF version |
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
tlmtrg | ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
2 | eqid 2736 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
3 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | eqid 2736 | . . . 4 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
5 | 1, 2, 3, 4 | istlm 23434 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
6 | 5 | simplbi 498 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing)) |
7 | 6 | simp3d 1143 | 1 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 Scalarcsca 17054 TopOpenctopn 17221 LModclmod 20221 ·sf cscaf 20222 Cn ccn 22473 ×t ctx 22809 TopMndctmd 23319 TopRingctrg 23405 TopModctlm 23407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-tlm 23411 |
This theorem is referenced by: tlmscatps 23440 |
Copyright terms: Public domain | W3C validator |