![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tlmtrg | Structured version Visualization version GIF version |
Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
tlmtrg | β’ (π β TopMod β πΉ β TopRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . 4 β’ ( Β·sf βπ) = ( Β·sf βπ) | |
2 | eqid 2726 | . . . 4 β’ (TopOpenβπ) = (TopOpenβπ) | |
3 | tlmtrg.f | . . . 4 β’ πΉ = (Scalarβπ) | |
4 | eqid 2726 | . . . 4 β’ (TopOpenβπΉ) = (TopOpenβπΉ) | |
5 | 1, 2, 3, 4 | istlm 24040 | . . 3 β’ (π β TopMod β ((π β TopMnd β§ π β LMod β§ πΉ β TopRing) β§ ( Β·sf βπ) β (((TopOpenβπΉ) Γt (TopOpenβπ)) Cn (TopOpenβπ)))) |
6 | 5 | simplbi 497 | . 2 β’ (π β TopMod β (π β TopMnd β§ π β LMod β§ πΉ β TopRing)) |
7 | 6 | simp3d 1141 | 1 β’ (π β TopMod β πΉ β TopRing) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6536 (class class class)co 7404 Scalarcsca 17207 TopOpenctopn 17374 LModclmod 20704 Β·sf cscaf 20705 Cn ccn 23079 Γt ctx 23415 TopMndctmd 23925 TopRingctrg 24011 TopModctlm 24013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6488 df-fv 6544 df-ov 7407 df-tlm 24017 |
This theorem is referenced by: tlmscatps 24046 |
Copyright terms: Public domain | W3C validator |