| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tlmtrg | Structured version Visualization version GIF version | ||
| Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| tlmtrg | ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
| 3 | tlmtrg.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (TopOpen‘𝐹) = (TopOpen‘𝐹) | |
| 5 | 1, 2, 3, 4 | istlm 24089 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘𝐹) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
| 6 | 5 | simplbi 497 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing)) |
| 7 | 6 | simp3d 1144 | 1 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Scalarcsca 17183 TopOpenctopn 17344 LModclmod 20782 ·sf cscaf 20783 Cn ccn 23128 ×t ctx 23464 TopMndctmd 23974 TopRingctrg 24060 TopModctlm 24062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-tlm 24066 |
| This theorem is referenced by: tlmscatps 24095 |
| Copyright terms: Public domain | W3C validator |