Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tlmscatps | Structured version Visualization version GIF version |
Description: The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
tlmscatps | ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlmtrg.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | tlmtrg 23249 | . 2 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
3 | trgtps 23229 | . 2 ⊢ (𝐹 ∈ TopRing → 𝐹 ∈ TopSp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Scalarcsca 16891 TopSpctps 21989 TopRingctrg 23215 TopModctlm 23217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-tmd 23131 df-tgp 23132 df-trg 23219 df-tlm 23221 |
This theorem is referenced by: cnmpt1vsca 23253 cnmpt2vsca 23254 tlmtgp 23255 |
Copyright terms: Public domain | W3C validator |