MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmscatps Structured version   Visualization version   GIF version

Theorem tlmscatps 23558
Description: The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
tlmscatps (π‘Š ∈ TopMod β†’ 𝐹 ∈ TopSp)

Proof of Theorem tlmscatps
StepHypRef Expression
1 tlmtrg.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
21tlmtrg 23557 . 2 (π‘Š ∈ TopMod β†’ 𝐹 ∈ TopRing)
3 trgtps 23537 . 2 (𝐹 ∈ TopRing β†’ 𝐹 ∈ TopSp)
42, 3syl 17 1 (π‘Š ∈ TopMod β†’ 𝐹 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  β€˜cfv 6497  Scalarcsca 17141  TopSpctps 22297  TopRingctrg 23523  TopModctlm 23525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5264
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-iota 6449  df-fv 6505  df-ov 7361  df-tmd 23439  df-tgp 23440  df-trg 23527  df-tlm 23529
This theorem is referenced by:  cnmpt1vsca  23561  cnmpt2vsca  23562  tlmtgp  23563
  Copyright terms: Public domain W3C validator