MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmscatps Structured version   Visualization version   GIF version

Theorem tlmscatps 24101
Description: The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmscatps (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)

Proof of Theorem tlmscatps
StepHypRef Expression
1 tlmtrg.f . . 3 𝐹 = (Scalar‘𝑊)
21tlmtrg 24100 . 2 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
3 trgtps 24080 . 2 (𝐹 ∈ TopRing → 𝐹 ∈ TopSp)
42, 3syl 17 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6476  Scalarcsca 17159  TopSpctps 22842  TopRingctrg 24066  TopModctlm 24068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-tmd 23982  df-tgp 23983  df-trg 24070  df-tlm 24072
This theorem is referenced by:  cnmpt1vsca  24104  cnmpt2vsca  24105  tlmtgp  24106
  Copyright terms: Public domain W3C validator