Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tlmscatps | Structured version Visualization version GIF version |
Description: The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmtrg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
tlmscatps | ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlmtrg.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | tlmtrg 23412 | . 2 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopRing) |
3 | trgtps 23392 | . 2 ⊢ (𝐹 ∈ TopRing → 𝐹 ∈ TopSp) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝑊 ∈ TopMod → 𝐹 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 Scalarcsca 17032 TopSpctps 22152 TopRingctrg 23378 TopModctlm 23380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-nul 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 df-ov 7316 df-tmd 23294 df-tgp 23295 df-trg 23382 df-tlm 23384 |
This theorem is referenced by: cnmpt1vsca 23416 cnmpt2vsca 23417 tlmtgp 23418 |
Copyright terms: Public domain | W3C validator |