MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmscatps Structured version   Visualization version   GIF version

Theorem tlmscatps 24129
Description: The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmscatps (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)

Proof of Theorem tlmscatps
StepHypRef Expression
1 tlmtrg.f . . 3 𝐹 = (Scalar‘𝑊)
21tlmtrg 24128 . 2 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
3 trgtps 24108 . 2 (𝐹 ∈ TopRing → 𝐹 ∈ TopSp)
42, 3syl 17 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  Scalarcsca 17274  TopSpctps 22870  TopRingctrg 24094  TopModctlm 24096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-tmd 24010  df-tgp 24011  df-trg 24098  df-tlm 24100
This theorem is referenced by:  cnmpt1vsca  24132  cnmpt2vsca  24133  tlmtgp  24134
  Copyright terms: Public domain W3C validator