MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmscatps Structured version   Visualization version   GIF version

Theorem tlmscatps 24085
Description: The scalar ring of a topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypothesis
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
tlmscatps (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)

Proof of Theorem tlmscatps
StepHypRef Expression
1 tlmtrg.f . . 3 𝐹 = (Scalar‘𝑊)
21tlmtrg 24084 . 2 (𝑊 ∈ TopMod → 𝐹 ∈ TopRing)
3 trgtps 24064 . 2 (𝐹 ∈ TopRing → 𝐹 ∈ TopSp)
42, 3syl 17 1 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  Scalarcsca 17230  TopSpctps 22826  TopRingctrg 24050  TopModctlm 24052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-tmd 23966  df-tgp 23967  df-trg 24054  df-tlm 24056
This theorem is referenced by:  cnmpt1vsca  24088  cnmpt2vsca  24089  tlmtgp  24090
  Copyright terms: Public domain W3C validator