MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmlmod Structured version   Visualization version   GIF version

Theorem tlmlmod 23693
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmlmod (𝑊 ∈ TopMod → 𝑊 ∈ LMod)

Proof of Theorem tlmlmod
StepHypRef Expression
1 eqid 2733 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2733 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2733 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2733 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 23689 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 499 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp2d 1144 1 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088  wcel 2107  cfv 6544  (class class class)co 7409  Scalarcsca 17200  TopOpenctopn 17367  LModclmod 20471   ·sf cscaf 20472   Cn ccn 22728   ×t ctx 23064  TopMndctmd 23574  TopRingctrg 23660  TopModctlm 23662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-tlm 23666
This theorem is referenced by:  tlmtgp  23700  tvclmod  23702
  Copyright terms: Public domain W3C validator