MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmlmod Structured version   Visualization version   GIF version

Theorem tlmlmod 24105
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmlmod (𝑊 ∈ TopMod → 𝑊 ∈ LMod)

Proof of Theorem tlmlmod
StepHypRef Expression
1 eqid 2733 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2733 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2733 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2733 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 24101 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 497 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp2d 1143 1 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2113  cfv 6486  (class class class)co 7352  Scalarcsca 17166  TopOpenctopn 17327  LModclmod 20795   ·sf cscaf 20796   Cn ccn 23140   ×t ctx 23476  TopMndctmd 23986  TopRingctrg 24072  TopModctlm 24074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-tlm 24078
This theorem is referenced by:  tlmtgp  24112  tvclmod  24114
  Copyright terms: Public domain W3C validator