![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tlmlmod | Structured version Visualization version GIF version |
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmlmod | ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
2 | eqid 2733 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
3 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2733 | . . . 4 ⊢ (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊)) | |
5 | 1, 2, 3, 4 | istlm 23689 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
6 | 5 | simplbi 499 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing)) |
7 | 6 | simp2d 1144 | 1 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Scalarcsca 17200 TopOpenctopn 17367 LModclmod 20471 ·sf cscaf 20472 Cn ccn 22728 ×t ctx 23064 TopMndctmd 23574 TopRingctrg 23660 TopModctlm 23662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-tlm 23666 |
This theorem is referenced by: tlmtgp 23700 tvclmod 23702 |
Copyright terms: Public domain | W3C validator |