Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tlmlmod | Structured version Visualization version GIF version |
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
tlmlmod | ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . 4 ⊢ ( ·sf ‘𝑊) = ( ·sf ‘𝑊) | |
2 | eqid 2759 | . . . 4 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
3 | eqid 2759 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
4 | eqid 2759 | . . . 4 ⊢ (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊)) | |
5 | 1, 2, 3, 4 | istlm 22900 | . . 3 ⊢ (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf ‘𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊)))) |
6 | 5 | simplbi 501 | . 2 ⊢ (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing)) |
7 | 6 | simp2d 1141 | 1 ⊢ (𝑊 ∈ TopMod → 𝑊 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2112 ‘cfv 6341 (class class class)co 7157 Scalarcsca 16641 TopOpenctopn 16768 LModclmod 19717 ·sf cscaf 19718 Cn ccn 21939 ×t ctx 22275 TopMndctmd 22785 TopRingctrg 22871 TopModctlm 22873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-rab 3080 df-v 3412 df-un 3866 df-in 3868 df-ss 3878 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-iota 6300 df-fv 6349 df-ov 7160 df-tlm 22877 |
This theorem is referenced by: tlmtgp 22911 tvclmod 22913 |
Copyright terms: Public domain | W3C validator |