MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmlmod Structured version   Visualization version   GIF version

Theorem tlmlmod 23913
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmlmod (𝑊 ∈ TopMod → 𝑊 ∈ LMod)

Proof of Theorem tlmlmod
StepHypRef Expression
1 eqid 2730 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2730 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2730 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2730 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 23909 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 496 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp2d 1141 1 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2104  cfv 6542  (class class class)co 7411  Scalarcsca 17204  TopOpenctopn 17371  LModclmod 20614   ·sf cscaf 20615   Cn ccn 22948   ×t ctx 23284  TopMndctmd 23794  TopRingctrg 23880  TopModctlm 23882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-ov 7414  df-tlm 23886
This theorem is referenced by:  tlmtgp  23920  tvclmod  23922
  Copyright terms: Public domain W3C validator