MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmlmod Structured version   Visualization version   GIF version

Theorem tlmlmod 22904
Description: A topological module is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmlmod (𝑊 ∈ TopMod → 𝑊 ∈ LMod)

Proof of Theorem tlmlmod
StepHypRef Expression
1 eqid 2759 . . . 4 ( ·sf𝑊) = ( ·sf𝑊)
2 eqid 2759 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
3 eqid 2759 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2759 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
51, 2, 3, 4istlm 22900 . . 3 (𝑊 ∈ TopMod ↔ ((𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing) ∧ ( ·sf𝑊) ∈ (((TopOpen‘(Scalar‘𝑊)) ×t (TopOpen‘𝑊)) Cn (TopOpen‘𝑊))))
65simplbi 501 . 2 (𝑊 ∈ TopMod → (𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ TopRing))
76simp2d 1141 1 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2112  cfv 6341  (class class class)co 7157  Scalarcsca 16641  TopOpenctopn 16768  LModclmod 19717   ·sf cscaf 19718   Cn ccn 21939   ×t ctx 22275  TopMndctmd 22785  TopRingctrg 22871  TopModctlm 22873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-rab 3080  df-v 3412  df-un 3866  df-in 3868  df-ss 3878  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-iota 6300  df-fv 6349  df-ov 7160  df-tlm 22877
This theorem is referenced by:  tlmtgp  22911  tvclmod  22913
  Copyright terms: Public domain W3C validator