Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntp Structured version   Visualization version   GIF version

Theorem wuntp 10125
 Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
wuntp.3 (𝜑𝐶𝑈)
Assertion
Ref Expression
wuntp (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈)

Proof of Theorem wuntp
StepHypRef Expression
1 tpass 4680 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 dfsn2 4572 . . . 4 {𝐴} = {𝐴, 𝐴}
4 wununi.2 . . . . 5 (𝜑𝐴𝑈)
52, 4, 4wunpr 10123 . . . 4 (𝜑 → {𝐴, 𝐴} ∈ 𝑈)
63, 5eqeltrid 2915 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
7 wunpr.3 . . . 4 (𝜑𝐵𝑈)
8 wuntp.3 . . . 4 (𝜑𝐶𝑈)
92, 7, 8wunpr 10123 . . 3 (𝜑 → {𝐵, 𝐶} ∈ 𝑈)
102, 6, 9wunun 10124 . 2 (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈)
111, 10eqeltrid 2915 1 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2107   ∪ cun 3932  {csn 4559  {cpr 4561  {ctp 4563  WUnicwun 10114 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-v 3495  df-un 3939  df-in 3941  df-ss 3950  df-sn 4560  df-pr 4562  df-tp 4564  df-uni 4831  df-tr 5164  df-wun 10116 This theorem is referenced by:  catcfuccl  17361  catcxpccl  17449
 Copyright terms: Public domain W3C validator