| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntp | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| wuntp.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntp | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpass 4752 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) | |
| 2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | dfsn2 4639 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 4 | wununi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 5 | 2, 4, 4 | wunpr 10749 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
| 6 | 3, 5 | eqeltrid 2845 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 7 | wunpr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 8 | wuntp.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 9 | 2, 7, 8 | wunpr 10749 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑈) |
| 10 | 2, 6, 9 | wunun 10750 | . 2 ⊢ (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈) |
| 11 | 1, 10 | eqeltrid 2845 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3949 {csn 4626 {cpr 4628 {ctp 4630 WUnicwun 10740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3482 df-un 3956 df-ss 3968 df-sn 4627 df-pr 4629 df-tp 4631 df-uni 4908 df-tr 5260 df-wun 10742 |
| This theorem is referenced by: catcfuccl 18163 catcxpccl 18252 |
| Copyright terms: Public domain | W3C validator |