Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wuntp | Structured version Visualization version GIF version |
Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
wuntp.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntp | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpass 4688 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) | |
2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | dfsn2 4574 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | wununi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
5 | 2, 4, 4 | wunpr 10465 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
6 | 3, 5 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
7 | wunpr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
8 | wuntp.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
9 | 2, 7, 8 | wunpr 10465 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑈) |
10 | 2, 6, 9 | wunun 10466 | . 2 ⊢ (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈) |
11 | 1, 10 | eqeltrid 2843 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cun 3885 {csn 4561 {cpr 4563 {ctp 4565 WUnicwun 10456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 df-tp 4566 df-uni 4840 df-tr 5192 df-wun 10458 |
This theorem is referenced by: catcfuccl 17834 catcfucclOLD 17835 catcxpccl 17924 catcxpcclOLD 17925 |
Copyright terms: Public domain | W3C validator |