MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuntp Structured version   Visualization version   GIF version

Theorem wuntp 10718
Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wununi.1 (𝜑𝑈 ∈ WUni)
wununi.2 (𝜑𝐴𝑈)
wunpr.3 (𝜑𝐵𝑈)
wuntp.3 (𝜑𝐶𝑈)
Assertion
Ref Expression
wuntp (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈)

Proof of Theorem wuntp
StepHypRef Expression
1 tpass 4726 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})
2 wununi.1 . . 3 (𝜑𝑈 ∈ WUni)
3 dfsn2 4612 . . . 4 {𝐴} = {𝐴, 𝐴}
4 wununi.2 . . . . 5 (𝜑𝐴𝑈)
52, 4, 4wunpr 10716 . . . 4 (𝜑 → {𝐴, 𝐴} ∈ 𝑈)
63, 5eqeltrid 2837 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
7 wunpr.3 . . . 4 (𝜑𝐵𝑈)
8 wuntp.3 . . . 4 (𝜑𝐶𝑈)
92, 7, 8wunpr 10716 . . 3 (𝜑 → {𝐵, 𝐶} ∈ 𝑈)
102, 6, 9wunun 10717 . 2 (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈)
111, 10eqeltrid 2837 1 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cun 3922  {csn 4599  {cpr 4601  {ctp 4603  WUnicwun 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-v 3459  df-un 3929  df-ss 3941  df-sn 4600  df-pr 4602  df-tp 4604  df-uni 4882  df-tr 5228  df-wun 10709
This theorem is referenced by:  catcfuccl  18118  catcxpccl  18206
  Copyright terms: Public domain W3C validator