![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuntp | Structured version Visualization version GIF version |
Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
wuntp.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntp | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpass 4758 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) | |
2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | dfsn2 4643 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | wununi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
5 | 2, 4, 4 | wunpr 10734 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
6 | 3, 5 | eqeltrid 2829 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
7 | wunpr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
8 | wuntp.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
9 | 2, 7, 8 | wunpr 10734 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑈) |
10 | 2, 6, 9 | wunun 10735 | . 2 ⊢ (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈) |
11 | 1, 10 | eqeltrid 2829 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∪ cun 3942 {csn 4630 {cpr 4632 {ctp 4634 WUnicwun 10725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-v 3463 df-un 3949 df-ss 3961 df-sn 4631 df-pr 4633 df-tp 4635 df-uni 4910 df-tr 5267 df-wun 10727 |
This theorem is referenced by: catcfuccl 18111 catcfucclOLD 18112 catcxpccl 18201 catcxpcclOLD 18202 |
Copyright terms: Public domain | W3C validator |