Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wuntp | Structured version Visualization version GIF version |
Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
wuntp.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
wuntp | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpass 4640 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) | |
2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | dfsn2 4526 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
4 | wununi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
5 | 2, 4, 4 | wunpr 10202 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
6 | 3, 5 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
7 | wunpr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
8 | wuntp.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
9 | 2, 7, 8 | wunpr 10202 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑈) |
10 | 2, 6, 9 | wunun 10203 | . 2 ⊢ (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈) |
11 | 1, 10 | eqeltrid 2837 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 ∪ cun 3839 {csn 4513 {cpr 4515 {ctp 4517 WUnicwun 10193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-ral 3058 df-v 3399 df-un 3846 df-in 3848 df-ss 3858 df-sn 4514 df-pr 4516 df-tp 4518 df-uni 4794 df-tr 5134 df-wun 10195 |
This theorem is referenced by: catcfuccl 17478 catcxpccl 17566 |
Copyright terms: Public domain | W3C validator |