| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wuntp | Structured version Visualization version GIF version | ||
| Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| wununi.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| wununi.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| wunpr.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| wuntp.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| wuntp | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpass 4726 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶}) | |
| 2 | wununi.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
| 3 | dfsn2 4612 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 4 | wununi.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 5 | 2, 4, 4 | wunpr 10716 | . . . 4 ⊢ (𝜑 → {𝐴, 𝐴} ∈ 𝑈) |
| 6 | 3, 5 | eqeltrid 2837 | . . 3 ⊢ (𝜑 → {𝐴} ∈ 𝑈) |
| 7 | wunpr.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 8 | wuntp.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 9 | 2, 7, 8 | wunpr 10716 | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ∈ 𝑈) |
| 10 | 2, 6, 9 | wunun 10717 | . 2 ⊢ (𝜑 → ({𝐴} ∪ {𝐵, 𝐶}) ∈ 𝑈) |
| 11 | 1, 10 | eqeltrid 2837 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∪ cun 3922 {csn 4599 {cpr 4601 {ctp 4603 WUnicwun 10707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-v 3459 df-un 3929 df-ss 3941 df-sn 4600 df-pr 4602 df-tp 4604 df-uni 4882 df-tr 5228 df-wun 10709 |
| This theorem is referenced by: catcfuccl 18118 catcxpccl 18206 |
| Copyright terms: Public domain | W3C validator |