Step | Hyp | Ref
| Expression |
1 | | 2onn 8644 |
. . . . . . . . . 10
β’
2o β Ο |
2 | | nnfi 9170 |
. . . . . . . . . 10
β’
(2o β Ο β 2o β
Fin) |
3 | 1, 2 | ax-mp 5 |
. . . . . . . . 9
β’
2o β Fin |
4 | | enfi 9193 |
. . . . . . . . 9
β’ (π β 2o β
(π β Fin β
2o β Fin)) |
5 | 3, 4 | mpbiri 257 |
. . . . . . . 8
β’ (π β 2o β
π β
Fin) |
6 | 5 | adantl 481 |
. . . . . . 7
β’ ((π β π β§ π β 2o) β π β Fin) |
7 | | diffi 9182 |
. . . . . . 7
β’ (π β Fin β (π β {π}) β Fin) |
8 | 6, 7 | syl 17 |
. . . . . 6
β’ ((π β π β§ π β 2o) β (π β {π}) β Fin) |
9 | 8 | cardidd 10547 |
. . . . 5
β’ ((π β π β§ π β 2o) β
(cardβ(π β
{π})) β (π β {π})) |
10 | 9 | ensymd 9004 |
. . . 4
β’ ((π β π β§ π β 2o) β (π β {π}) β (cardβ(π β {π}))) |
11 | | simpl 482 |
. . . . . . 7
β’ ((π β π β§ π β 2o) β π β π) |
12 | | dif1card 10008 |
. . . . . . 7
β’ ((π β Fin β§ π β π) β (cardβπ) = suc (cardβ(π β {π}))) |
13 | 6, 11, 12 | syl2anc 583 |
. . . . . 6
β’ ((π β π β§ π β 2o) β
(cardβπ) = suc
(cardβ(π β
{π}))) |
14 | | cardennn 9981 |
. . . . . . . . 9
β’ ((π β 2o β§
2o β Ο) β (cardβπ) = 2o) |
15 | 1, 14 | mpan2 688 |
. . . . . . . 8
β’ (π β 2o β
(cardβπ) =
2o) |
16 | | df-2o 8470 |
. . . . . . . 8
β’
2o = suc 1o |
17 | 15, 16 | eqtrdi 2787 |
. . . . . . 7
β’ (π β 2o β
(cardβπ) = suc
1o) |
18 | 17 | adantl 481 |
. . . . . 6
β’ ((π β π β§ π β 2o) β
(cardβπ) = suc
1o) |
19 | 13, 18 | eqtr3d 2773 |
. . . . 5
β’ ((π β π β§ π β 2o) β suc
(cardβ(π β
{π})) = suc
1o) |
20 | | suc11reg 9617 |
. . . . 5
β’ (suc
(cardβ(π β
{π})) = suc 1o
β (cardβ(π
β {π})) =
1o) |
21 | 19, 20 | sylib 217 |
. . . 4
β’ ((π β π β§ π β 2o) β
(cardβ(π β
{π})) =
1o) |
22 | 10, 21 | breqtrd 5175 |
. . 3
β’ ((π β π β§ π β 2o) β (π β {π}) β 1o) |
23 | | en1 9024 |
. . 3
β’ ((π β {π}) β 1o β βπ₯(π β {π}) = {π₯}) |
24 | 22, 23 | sylib 217 |
. 2
β’ ((π β π β§ π β 2o) β βπ₯(π β {π}) = {π₯}) |
25 | | simplll 772 |
. . . . . . 7
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β π β π) |
26 | 25 | elexd 3494 |
. . . . . 6
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β π β V) |
27 | | simplr 766 |
. . . . . . . . . . 11
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β (π β {π}) = {π₯}) |
28 | | sneqbg 4845 |
. . . . . . . . . . . . 13
β’ (π β π β ({π} = {π₯} β π = π₯)) |
29 | 28 | biimpar 477 |
. . . . . . . . . . . 12
β’ ((π β π β§ π = π₯) β {π} = {π₯}) |
30 | 29 | ad4ant14 749 |
. . . . . . . . . . 11
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β {π} = {π₯}) |
31 | 27, 30 | eqtr4d 2774 |
. . . . . . . . . 10
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β (π β {π}) = {π}) |
32 | 31 | ineq2d 4213 |
. . . . . . . . 9
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β ({π} β© (π β {π})) = ({π} β© {π})) |
33 | | disjdif 4472 |
. . . . . . . . 9
β’ ({π} β© (π β {π})) = β
|
34 | | inidm 4219 |
. . . . . . . . 9
β’ ({π} β© {π}) = {π} |
35 | 32, 33, 34 | 3eqtr3g 2794 |
. . . . . . . 8
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β β
= {π}) |
36 | 35 | eqcomd 2737 |
. . . . . . 7
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β {π} = β
) |
37 | | snprc 4722 |
. . . . . . 7
β’ (Β¬
π β V β {π} = β
) |
38 | 36, 37 | sylibr 233 |
. . . . . 6
β’ ((((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β§ π = π₯) β Β¬ π β V) |
39 | 26, 38 | pm2.65da 814 |
. . . . 5
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β Β¬ π = π₯) |
40 | 39 | neqned 2946 |
. . . 4
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β π β π₯) |
41 | | simpr 484 |
. . . . . 6
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β (π β {π}) = {π₯}) |
42 | 41 | unieqd 4923 |
. . . . 5
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β βͺ (π β {π}) = βͺ {π₯}) |
43 | | unisnv 4932 |
. . . . 5
β’ βͺ {π₯}
= π₯ |
44 | 42, 43 | eqtrdi 2787 |
. . . 4
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β βͺ (π β {π}) = π₯) |
45 | 40, 44 | neeqtrrd 3014 |
. . 3
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β π β βͺ (π β {π})) |
46 | 45 | necomd 2995 |
. 2
β’ (((π β π β§ π β 2o) β§ (π β {π}) = {π₯}) β βͺ (π β {π}) β π) |
47 | 24, 46 | exlimddv 1937 |
1
β’ ((π β π β§ π β 2o) β βͺ (π
β {π}) β π) |