Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidifsnne Structured version   Visualization version   GIF version

Theorem unidifsnne 30884
Description: The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017.)
Assertion
Ref Expression
unidifsnne ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)

Proof of Theorem unidifsnne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2onn 8472 . . . . . . . . . 10 2o ∈ ω
2 nnfi 8950 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . . . . . 9 2o ∈ Fin
4 enfi 8973 . . . . . . . . 9 (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin))
53, 4mpbiri 257 . . . . . . . 8 (𝑃 ≈ 2o𝑃 ∈ Fin)
65adantl 482 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ∈ Fin)
7 diffi 8962 . . . . . . 7 (𝑃 ∈ Fin → (𝑃 ∖ {𝑋}) ∈ Fin)
86, 7syl 17 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ Fin)
98cardidd 10305 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (card‘(𝑃 ∖ {𝑋})) ≈ (𝑃 ∖ {𝑋}))
109ensymd 8791 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ (card‘(𝑃 ∖ {𝑋})))
11 simpl 483 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
12 dif1card 9766 . . . . . . 7 ((𝑃 ∈ Fin ∧ 𝑋𝑃) → (card‘𝑃) = suc (card‘(𝑃 ∖ {𝑋})))
136, 11, 12syl2anc 584 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (card‘𝑃) = suc (card‘(𝑃 ∖ {𝑋})))
14 cardennn 9741 . . . . . . . . 9 ((𝑃 ≈ 2o ∧ 2o ∈ ω) → (card‘𝑃) = 2o)
151, 14mpan2 688 . . . . . . . 8 (𝑃 ≈ 2o → (card‘𝑃) = 2o)
16 df-2o 8298 . . . . . . . 8 2o = suc 1o
1715, 16eqtrdi 2794 . . . . . . 7 (𝑃 ≈ 2o → (card‘𝑃) = suc 1o)
1817adantl 482 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (card‘𝑃) = suc 1o)
1913, 18eqtr3d 2780 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → suc (card‘(𝑃 ∖ {𝑋})) = suc 1o)
20 suc11reg 9377 . . . . 5 (suc (card‘(𝑃 ∖ {𝑋})) = suc 1o ↔ (card‘(𝑃 ∖ {𝑋})) = 1o)
2119, 20sylib 217 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (card‘(𝑃 ∖ {𝑋})) = 1o)
2210, 21breqtrd 5100 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
23 en1 8811 . . 3 ((𝑃 ∖ {𝑋}) ≈ 1o ↔ ∃𝑥(𝑃 ∖ {𝑋}) = {𝑥})
2422, 23sylib 217 . 2 ((𝑋𝑃𝑃 ≈ 2o) → ∃𝑥(𝑃 ∖ {𝑋}) = {𝑥})
25 simplll 772 . . . . . . 7 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → 𝑋𝑃)
2625elexd 3452 . . . . . 6 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → 𝑋 ∈ V)
27 simplr 766 . . . . . . . . . . 11 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → (𝑃 ∖ {𝑋}) = {𝑥})
28 sneqbg 4774 . . . . . . . . . . . . 13 (𝑋𝑃 → ({𝑋} = {𝑥} ↔ 𝑋 = 𝑥))
2928biimpar 478 . . . . . . . . . . . 12 ((𝑋𝑃𝑋 = 𝑥) → {𝑋} = {𝑥})
3029ad4ant14 749 . . . . . . . . . . 11 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → {𝑋} = {𝑥})
3127, 30eqtr4d 2781 . . . . . . . . . 10 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → (𝑃 ∖ {𝑋}) = {𝑋})
3231ineq2d 4146 . . . . . . . . 9 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → ({𝑋} ∩ (𝑃 ∖ {𝑋})) = ({𝑋} ∩ {𝑋}))
33 disjdif 4405 . . . . . . . . 9 ({𝑋} ∩ (𝑃 ∖ {𝑋})) = ∅
34 inidm 4152 . . . . . . . . 9 ({𝑋} ∩ {𝑋}) = {𝑋}
3532, 33, 343eqtr3g 2801 . . . . . . . 8 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → ∅ = {𝑋})
3635eqcomd 2744 . . . . . . 7 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → {𝑋} = ∅)
37 snprc 4653 . . . . . . 7 𝑋 ∈ V ↔ {𝑋} = ∅)
3836, 37sylibr 233 . . . . . 6 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → ¬ 𝑋 ∈ V)
3926, 38pm2.65da 814 . . . . 5 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → ¬ 𝑋 = 𝑥)
4039neqned 2950 . . . 4 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → 𝑋𝑥)
41 simpr 485 . . . . . 6 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = {𝑥})
4241unieqd 4853 . . . . 5 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = {𝑥})
43 vex 3436 . . . . . 6 𝑥 ∈ V
4443unisn 4861 . . . . 5 {𝑥} = 𝑥
4542, 44eqtrdi 2794 . . . 4 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = 𝑥)
4640, 45neeqtrrd 3018 . . 3 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → 𝑋 (𝑃 ∖ {𝑋}))
4746necomd 2999 . 2 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
4824, 47exlimddv 1938 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cin 3886  c0 4256  {csn 4561   cuni 4839   class class class wbr 5074  suc csuc 6268  cfv 6433  ωcom 7712  1oc1o 8290  2oc2o 8291  cen 8730  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-ac 9872
This theorem is referenced by:  cyc3genpmlem  31418
  Copyright terms: Public domain W3C validator