Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidifsnne Structured version   Visualization version   GIF version

Theorem unidifsnne 32564
Description: The other element of a pair is not the known element. (Contributed by Thierry Arnoux, 26-Aug-2017.)
Assertion
Ref Expression
unidifsnne ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)

Proof of Theorem unidifsnne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2onn 8698 . . . . . . . . . 10 2o ∈ ω
2 nnfi 9233 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
31, 2ax-mp 5 . . . . . . . . 9 2o ∈ Fin
4 enfi 9253 . . . . . . . . 9 (𝑃 ≈ 2o → (𝑃 ∈ Fin ↔ 2o ∈ Fin))
53, 4mpbiri 258 . . . . . . . 8 (𝑃 ≈ 2o𝑃 ∈ Fin)
65adantl 481 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑃 ∈ Fin)
7 diffi 9242 . . . . . . 7 (𝑃 ∈ Fin → (𝑃 ∖ {𝑋}) ∈ Fin)
86, 7syl 17 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ∈ Fin)
98cardidd 10618 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → (card‘(𝑃 ∖ {𝑋})) ≈ (𝑃 ∖ {𝑋}))
109ensymd 9065 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ (card‘(𝑃 ∖ {𝑋})))
11 simpl 482 . . . . . . 7 ((𝑋𝑃𝑃 ≈ 2o) → 𝑋𝑃)
12 dif1card 10079 . . . . . . 7 ((𝑃 ∈ Fin ∧ 𝑋𝑃) → (card‘𝑃) = suc (card‘(𝑃 ∖ {𝑋})))
136, 11, 12syl2anc 583 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (card‘𝑃) = suc (card‘(𝑃 ∖ {𝑋})))
14 cardennn 10052 . . . . . . . . 9 ((𝑃 ≈ 2o ∧ 2o ∈ ω) → (card‘𝑃) = 2o)
151, 14mpan2 690 . . . . . . . 8 (𝑃 ≈ 2o → (card‘𝑃) = 2o)
16 df-2o 8523 . . . . . . . 8 2o = suc 1o
1715, 16eqtrdi 2796 . . . . . . 7 (𝑃 ≈ 2o → (card‘𝑃) = suc 1o)
1817adantl 481 . . . . . 6 ((𝑋𝑃𝑃 ≈ 2o) → (card‘𝑃) = suc 1o)
1913, 18eqtr3d 2782 . . . . 5 ((𝑋𝑃𝑃 ≈ 2o) → suc (card‘(𝑃 ∖ {𝑋})) = suc 1o)
20 suc11reg 9688 . . . . 5 (suc (card‘(𝑃 ∖ {𝑋})) = suc 1o ↔ (card‘(𝑃 ∖ {𝑋})) = 1o)
2119, 20sylib 218 . . . 4 ((𝑋𝑃𝑃 ≈ 2o) → (card‘(𝑃 ∖ {𝑋})) = 1o)
2210, 21breqtrd 5192 . . 3 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≈ 1o)
23 en1 9086 . . 3 ((𝑃 ∖ {𝑋}) ≈ 1o ↔ ∃𝑥(𝑃 ∖ {𝑋}) = {𝑥})
2422, 23sylib 218 . 2 ((𝑋𝑃𝑃 ≈ 2o) → ∃𝑥(𝑃 ∖ {𝑋}) = {𝑥})
25 simplll 774 . . . . . . 7 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → 𝑋𝑃)
2625elexd 3512 . . . . . 6 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → 𝑋 ∈ V)
27 simplr 768 . . . . . . . . . . 11 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → (𝑃 ∖ {𝑋}) = {𝑥})
28 sneqbg 4868 . . . . . . . . . . . . 13 (𝑋𝑃 → ({𝑋} = {𝑥} ↔ 𝑋 = 𝑥))
2928biimpar 477 . . . . . . . . . . . 12 ((𝑋𝑃𝑋 = 𝑥) → {𝑋} = {𝑥})
3029ad4ant14 751 . . . . . . . . . . 11 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → {𝑋} = {𝑥})
3127, 30eqtr4d 2783 . . . . . . . . . 10 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → (𝑃 ∖ {𝑋}) = {𝑋})
3231ineq2d 4241 . . . . . . . . 9 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → ({𝑋} ∩ (𝑃 ∖ {𝑋})) = ({𝑋} ∩ {𝑋}))
33 disjdif 4495 . . . . . . . . 9 ({𝑋} ∩ (𝑃 ∖ {𝑋})) = ∅
34 inidm 4248 . . . . . . . . 9 ({𝑋} ∩ {𝑋}) = {𝑋}
3532, 33, 343eqtr3g 2803 . . . . . . . 8 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → ∅ = {𝑋})
3635eqcomd 2746 . . . . . . 7 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → {𝑋} = ∅)
37 snprc 4742 . . . . . . 7 𝑋 ∈ V ↔ {𝑋} = ∅)
3836, 37sylibr 234 . . . . . 6 ((((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) ∧ 𝑋 = 𝑥) → ¬ 𝑋 ∈ V)
3926, 38pm2.65da 816 . . . . 5 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → ¬ 𝑋 = 𝑥)
4039neqned 2953 . . . 4 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → 𝑋𝑥)
41 simpr 484 . . . . . 6 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = {𝑥})
4241unieqd 4944 . . . . 5 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = {𝑥})
43 unisnv 4951 . . . . 5 {𝑥} = 𝑥
4442, 43eqtrdi 2796 . . . 4 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) = 𝑥)
4540, 44neeqtrrd 3021 . . 3 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → 𝑋 (𝑃 ∖ {𝑋}))
4645necomd 3002 . 2 (((𝑋𝑃𝑃 ≈ 2o) ∧ (𝑃 ∖ {𝑋}) = {𝑥}) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
4724, 46exlimddv 1934 1 ((𝑋𝑃𝑃 ≈ 2o) → (𝑃 ∖ {𝑋}) ≠ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  cin 3975  c0 4352  {csn 4648   cuni 4931   class class class wbr 5166  suc csuc 6397  cfv 6573  ωcom 7903  1oc1o 8515  2oc2o 8516  cen 9000  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185
This theorem is referenced by:  cyc3genpmlem  33144
  Copyright terms: Public domain W3C validator