| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for trlsegvdeg 30156. (Contributed by AV, 20-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
| trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| Ref | Expression |
|---|---|
| trlsegvdeglem2 | ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 2 | 1 | funresd 6559 | . 2 ⊢ (𝜑 → Fun (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 3 | trlsegvdeg.ix | . . 3 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 4 | 3 | funeqd 6538 | . 2 ⊢ (𝜑 → (Fun (iEdg‘𝑋) ↔ Fun (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 class class class wbr 5107 ↾ cres 5640 “ cima 5641 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 Trailsctrls 29618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-res 5650 df-fun 6513 |
| This theorem is referenced by: trlsegvdeg 30156 |
| Copyright terms: Public domain | W3C validator |