Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 28591. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
trlsegvdeglem2 | ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
2 | 1 | funresd 6477 | . 2 ⊢ (𝜑 → Fun (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
3 | trlsegvdeg.ix | . . 3 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
4 | 3 | funeqd 6456 | . 2 ⊢ (𝜑 → (Fun (iEdg‘𝑋) ↔ Fun (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
5 | 2, 4 | mpbird 256 | 1 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {csn 4561 〈cop 4567 class class class wbr 5074 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 Trailsctrls 28058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-res 5601 df-fun 6435 |
This theorem is referenced by: trlsegvdeg 28591 |
Copyright terms: Public domain | W3C validator |