![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 30024. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem2 | β’ (π β Fun (iEdgβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.f | . . 3 β’ (π β Fun πΌ) | |
2 | 1 | funresd 6590 | . 2 β’ (π β Fun (πΌ βΎ (πΉ β (0..^π)))) |
3 | trlsegvdeg.ix | . . 3 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
4 | 3 | funeqd 6569 | . 2 β’ (π β (Fun (iEdgβπ) β Fun (πΌ βΎ (πΉ β (0..^π))))) |
5 | 2, 4 | mpbird 257 | 1 β’ (π β Fun (iEdgβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 {csn 4624 β¨cop 4630 class class class wbr 5142 βΎ cres 5674 β cima 5675 Fun wfun 6536 βcfv 6542 (class class class)co 7414 0cc0 11130 ...cfz 13508 ..^cfzo 13651 β―chash 14313 Vtxcvtx 28796 iEdgciedg 28797 Trailsctrls 29491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 df-br 5143 df-opab 5205 df-rel 5679 df-cnv 5680 df-co 5681 df-res 5684 df-fun 6544 |
This theorem is referenced by: trlsegvdeg 30024 |
Copyright terms: Public domain | W3C validator |