| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for trlsegvdeg 30174. (Contributed by AV, 20-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
| trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| Ref | Expression |
|---|---|
| trlsegvdeglem2 | ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 2 | 1 | funresd 6589 | . 2 ⊢ (𝜑 → Fun (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 3 | trlsegvdeg.ix | . . 3 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 4 | 3 | funeqd 6568 | . 2 ⊢ (𝜑 → (Fun (iEdg‘𝑋) ↔ Fun (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4606 〈cop 4612 class class class wbr 5123 ↾ cres 5667 “ cima 5668 Fun wfun 6535 ‘cfv 6541 (class class class)co 7413 0cc0 11137 ...cfz 13529 ..^cfzo 13676 ♯chash 14351 Vtxcvtx 28941 iEdgciedg 28942 Trailsctrls 29636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-ss 3948 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-res 5677 df-fun 6543 |
| This theorem is referenced by: trlsegvdeg 30174 |
| Copyright terms: Public domain | W3C validator |