| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for trlsegvdeg 30207. (Contributed by AV, 20-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
| trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
| trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
| trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
| trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
| trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
| trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
| Ref | Expression |
|---|---|
| trlsegvdeglem2 | ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.f | . . 3 ⊢ (𝜑 → Fun 𝐼) | |
| 2 | 1 | funresd 6524 | . 2 ⊢ (𝜑 → Fun (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
| 3 | trlsegvdeg.ix | . . 3 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
| 4 | 3 | funeqd 6503 | . 2 ⊢ (𝜑 → (Fun (iEdg‘𝑋) ↔ Fun (𝐼 ↾ (𝐹 “ (0..^𝑁))))) |
| 5 | 2, 4 | mpbird 257 | 1 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 class class class wbr 5089 ↾ cres 5616 “ cima 5617 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ...cfz 13407 ..^cfzo 13554 ♯chash 14237 Vtxcvtx 28974 iEdgciedg 28975 Trailsctrls 29667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-res 5626 df-fun 6483 |
| This theorem is referenced by: trlsegvdeg 30207 |
| Copyright terms: Public domain | W3C validator |