![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 30076. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem2 | β’ (π β Fun (iEdgβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.f | . . 3 β’ (π β Fun πΌ) | |
2 | 1 | funresd 6591 | . 2 β’ (π β Fun (πΌ βΎ (πΉ β (0..^π)))) |
3 | trlsegvdeg.ix | . . 3 β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) | |
4 | 3 | funeqd 6570 | . 2 β’ (π β (Fun (iEdgβπ) β Fun (πΌ βΎ (πΉ β (0..^π))))) |
5 | 2, 4 | mpbird 256 | 1 β’ (π β Fun (iEdgβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 {csn 4625 β¨cop 4631 class class class wbr 5144 βΎ cres 5675 β cima 5676 Fun wfun 6537 βcfv 6543 (class class class)co 7413 0cc0 11133 ...cfz 13511 ..^cfzo 13654 β―chash 14316 Vtxcvtx 28848 iEdgciedg 28849 Trailsctrls 29543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-in 3948 df-ss 3958 df-br 5145 df-opab 5207 df-rel 5680 df-cnv 5681 df-co 5682 df-res 5685 df-fun 6545 |
This theorem is referenced by: trlsegvdeg 30076 |
Copyright terms: Public domain | W3C validator |