| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6528 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5625 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 df-br 5096 df-opab 5158 df-rel 5630 df-cnv 5631 df-co 5632 df-res 5635 df-fun 6488 |
| This theorem is referenced by: fnssresb 6608 respreima 7004 fssrescdmd 7064 frrlem11 8236 frrlem12 8237 frrlem15 9672 gsumzadd 19819 gsum2dlem2 19868 nogesgn1ores 27602 noinfres 27650 noinfbnd2lem1 27658 cyclnumvtx 29763 trlsegvdeglem2 30183 sspg 30690 ssps 30692 sspn 30698 fresf1o 32588 fsupprnfi 32648 gsumhashmul 33027 limsupresxr 45751 liminfresxr 45752 afvco2 47164 |
| Copyright terms: Public domain | W3C validator |