![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | funres 6598 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5682 Fun wfun 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3473 df-in 3954 df-ss 3964 df-br 5151 df-opab 5213 df-rel 5687 df-cnv 5688 df-co 5689 df-res 5692 df-fun 6553 |
This theorem is referenced by: fnssresb 6680 respreima 7078 fssrescdmd 7139 frrlem11 8306 frrlem12 8307 frrlem15 9786 gsumzadd 19882 gsum2dlem2 19931 nogesgn1ores 27625 noinfres 27673 noinfbnd2lem1 27681 trlsegvdeglem2 30049 sspg 30556 ssps 30558 sspn 30564 fresf1o 32434 fsupprnfi 32490 gsumhashmul 32788 limsupresxr 45156 liminfresxr 45157 afvco2 46558 |
Copyright terms: Public domain | W3C validator |