![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | funres 6610 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5691 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-res 5701 df-fun 6565 |
This theorem is referenced by: fnssresb 6691 respreima 7086 fssrescdmd 7146 frrlem11 8320 frrlem12 8321 frrlem15 9795 gsumzadd 19955 gsum2dlem2 20004 nogesgn1ores 27734 noinfres 27782 noinfbnd2lem1 27790 trlsegvdeglem2 30250 sspg 30757 ssps 30759 sspn 30765 fresf1o 32648 fsupprnfi 32707 gsumhashmul 33047 limsupresxr 45722 liminfresxr 45723 afvco2 47126 |
Copyright terms: Public domain | W3C validator |