| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6561 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5643 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-res 5653 df-fun 6516 |
| This theorem is referenced by: fnssresb 6643 respreima 7041 fssrescdmd 7101 frrlem11 8278 frrlem12 8279 frrlem15 9717 gsumzadd 19859 gsum2dlem2 19908 nogesgn1ores 27593 noinfres 27641 noinfbnd2lem1 27649 cyclnumvtx 29737 trlsegvdeglem2 30157 sspg 30664 ssps 30666 sspn 30672 fresf1o 32562 fsupprnfi 32622 gsumhashmul 33008 limsupresxr 45771 liminfresxr 45772 afvco2 47181 |
| Copyright terms: Public domain | W3C validator |