MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresd Structured version   Visualization version   GIF version

Theorem funresd 6559
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
funresd.1 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
funresd (𝜑 → Fun (𝐹𝐴))

Proof of Theorem funresd
StepHypRef Expression
1 funresd.1 . 2 (𝜑 → Fun 𝐹)
2 funres 6558 . 2 (Fun 𝐹 → Fun (𝐹𝐴))
31, 2syl 17 1 (𝜑 → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cres 5640  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-ss 3931  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-res 5650  df-fun 6513
This theorem is referenced by:  fnssresb  6640  respreima  7038  fssrescdmd  7098  frrlem11  8275  frrlem12  8276  frrlem15  9710  gsumzadd  19852  gsum2dlem2  19901  nogesgn1ores  27586  noinfres  27634  noinfbnd2lem1  27642  cyclnumvtx  29730  trlsegvdeglem2  30150  sspg  30657  ssps  30659  sspn  30665  fresf1o  32555  fsupprnfi  32615  gsumhashmul  33001  limsupresxr  45764  liminfresxr  45765  afvco2  47177
  Copyright terms: Public domain W3C validator