Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | funres 6474 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5592 Fun wfun 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-br 5080 df-opab 5142 df-rel 5597 df-cnv 5598 df-co 5599 df-res 5602 df-fun 6434 |
This theorem is referenced by: fnssresb 6552 respreima 6940 frrlem11 8103 frrlem12 8104 frrlem15 9516 gsumzadd 19521 gsum2dlem2 19570 trlsegvdeglem2 28581 sspg 29086 ssps 29088 sspn 29094 fresf1o 30962 fsupprnfi 31022 gsumhashmul 31312 nogesgn1ores 33873 noinfres 33921 noinfbnd2lem1 33929 limsupresxr 43278 liminfresxr 43279 afvco2 44636 |
Copyright terms: Public domain | W3C validator |