| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6558 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5640 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-res 5650 df-fun 6513 |
| This theorem is referenced by: fnssresb 6640 respreima 7038 fssrescdmd 7098 frrlem11 8275 frrlem12 8276 frrlem15 9710 gsumzadd 19852 gsum2dlem2 19901 nogesgn1ores 27586 noinfres 27634 noinfbnd2lem1 27642 cyclnumvtx 29730 trlsegvdeglem2 30150 sspg 30657 ssps 30659 sspn 30665 fresf1o 32555 fsupprnfi 32615 gsumhashmul 33001 limsupresxr 45764 liminfresxr 45765 afvco2 47177 |
| Copyright terms: Public domain | W3C validator |