![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | funres 6620 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5702 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-res 5712 df-fun 6575 |
This theorem is referenced by: fnssresb 6702 respreima 7099 fssrescdmd 7160 frrlem11 8337 frrlem12 8338 frrlem15 9826 gsumzadd 19964 gsum2dlem2 20013 nogesgn1ores 27737 noinfres 27785 noinfbnd2lem1 27793 trlsegvdeglem2 30253 sspg 30760 ssps 30762 sspn 30768 fresf1o 32650 fsupprnfi 32704 gsumhashmul 33040 limsupresxr 45687 liminfresxr 45688 afvco2 47091 |
Copyright terms: Public domain | W3C validator |