| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6518 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5613 Fun wfun 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-br 5087 df-opab 5149 df-rel 5618 df-cnv 5619 df-co 5620 df-res 5623 df-fun 6478 |
| This theorem is referenced by: fnssresb 6598 respreima 6994 fssrescdmd 7054 frrlem11 8221 frrlem12 8222 frrlem15 9645 gsumzadd 19829 gsum2dlem2 19878 nogesgn1ores 27608 noinfres 27656 noinfbnd2lem1 27664 cyclnumvtx 29773 trlsegvdeglem2 30193 sspg 30700 ssps 30702 sspn 30708 fresf1o 32605 fsupprnfi 32665 gsumhashmul 33033 limsupresxr 45804 liminfresxr 45805 afvco2 47207 |
| Copyright terms: Public domain | W3C validator |