Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | funres 6460 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5582 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-res 5592 df-fun 6420 |
This theorem is referenced by: fnssresb 6538 respreima 6925 frrlem11 8083 frrlem12 8084 frrlem15 9446 gsumzadd 19438 gsum2dlem2 19487 trlsegvdeglem2 28486 sspg 28991 ssps 28993 sspn 28999 fresf1o 30867 fsupprnfi 30928 gsumhashmul 31218 nogesgn1ores 33804 noinfres 33852 noinfbnd2lem1 33860 limsupresxr 43197 liminfresxr 43198 afvco2 44555 |
Copyright terms: Public domain | W3C validator |