| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6531 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5623 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-res 5633 df-fun 6491 |
| This theorem is referenced by: fnssresb 6611 respreima 7008 fssrescdmd 7068 frrlem11 8235 frrlem12 8236 frrlem15 9661 gsumzadd 19842 gsum2dlem2 19891 nogesgn1ores 27633 noinfres 27681 noinfbnd2lem1 27689 cyclnumvtx 29799 trlsegvdeglem2 30222 sspg 30729 ssps 30731 sspn 30737 fresf1o 32635 fsupprnfi 32697 gsumhashmul 33078 limsupresxr 45926 liminfresxr 45927 afvco2 47338 |
| Copyright terms: Public domain | W3C validator |