MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funresd Structured version   Visualization version   GIF version

Theorem funresd 6599
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
funresd.1 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
funresd (𝜑 → Fun (𝐹𝐴))

Proof of Theorem funresd
StepHypRef Expression
1 funresd.1 . 2 (𝜑 → Fun 𝐹)
2 funres 6598 . 2 (Fun 𝐹 → Fun (𝐹𝐴))
31, 2syl 17 1 (𝜑 → Fun (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cres 5682  Fun wfun 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3473  df-in 3954  df-ss 3964  df-br 5151  df-opab 5213  df-rel 5687  df-cnv 5688  df-co 5689  df-res 5692  df-fun 6553
This theorem is referenced by:  fnssresb  6680  respreima  7078  fssrescdmd  7139  frrlem11  8306  frrlem12  8307  frrlem15  9786  gsumzadd  19882  gsum2dlem2  19931  nogesgn1ores  27625  noinfres  27673  noinfbnd2lem1  27681  trlsegvdeglem2  30049  sspg  30556  ssps  30558  sspn  30564  fresf1o  32434  fsupprnfi  32490  gsumhashmul  32788  limsupresxr  45156  liminfresxr  45157  afvco2  46558
  Copyright terms: Public domain W3C validator