| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6588 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5667 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-ss 3948 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-res 5677 df-fun 6543 |
| This theorem is referenced by: fnssresb 6670 respreima 7066 fssrescdmd 7126 frrlem11 8303 frrlem12 8304 frrlem15 9779 gsumzadd 19908 gsum2dlem2 19957 nogesgn1ores 27655 noinfres 27703 noinfbnd2lem1 27711 cyclnumvtx 29748 trlsegvdeglem2 30168 sspg 30675 ssps 30677 sspn 30683 fresf1o 32576 fsupprnfi 32636 gsumhashmul 33003 limsupresxr 45738 liminfresxr 45739 afvco2 47146 |
| Copyright terms: Public domain | W3C validator |