| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version | ||
| Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
| Ref | Expression |
|---|---|
| funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | funres 6578 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↾ cres 5656 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-res 5666 df-fun 6533 |
| This theorem is referenced by: fnssresb 6660 respreima 7056 fssrescdmd 7116 frrlem11 8295 frrlem12 8296 frrlem15 9771 gsumzadd 19903 gsum2dlem2 19952 nogesgn1ores 27638 noinfres 27686 noinfbnd2lem1 27694 cyclnumvtx 29782 trlsegvdeglem2 30202 sspg 30709 ssps 30711 sspn 30717 fresf1o 32609 fsupprnfi 32669 gsumhashmul 33055 limsupresxr 45795 liminfresxr 45796 afvco2 47205 |
| Copyright terms: Public domain | W3C validator |