Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem1 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 28699. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
Ref | Expression |
---|---|
trlsegvdeglem1 | ⊢ (𝜑 → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
2 | trlsegvdeg.w | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
3 | trliswlk 28173 | . . 3 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | trlsegvdeg.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | wlkpvtx 28135 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(♯‘𝐹)) → (𝑃‘𝑁) ∈ 𝑉)) |
6 | elfzofz 13473 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹))) | |
7 | 5, 6 | impel 506 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝑁) ∈ 𝑉) |
8 | 4 | wlkpvtx 28135 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑁 + 1) ∈ (0...(♯‘𝐹)) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
9 | fzofzp1 13554 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (𝑁 + 1) ∈ (0...(♯‘𝐹))) | |
10 | 8, 9 | impel 506 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑃‘(𝑁 + 1)) ∈ 𝑉) |
11 | 7, 10 | jca 512 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
12 | 11 | ex 413 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0..^(♯‘𝐹)) → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))) |
13 | 2, 3, 12 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑁 ∈ (0..^(♯‘𝐹)) → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))) |
14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5085 Fun wfun 6457 ‘cfv 6463 (class class class)co 7313 0cc0 10941 1c1 10942 + caddc 10944 ...cfz 13309 ..^cfzo 13452 ♯chash 14114 Vtxcvtx 27474 iEdgciedg 27475 Walkscwlks 28071 Trailsctrls 28166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-fz 13310 df-fzo 13453 df-hash 14115 df-word 14287 df-wlks 28074 df-trls 28168 |
This theorem is referenced by: eupth2lem3lem3 28702 eupth2lem3lem4 28703 eupth2lem3lem5 28704 |
Copyright terms: Public domain | W3C validator |