![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem1 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 27603. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
Ref | Expression |
---|---|
trlsegvdeglem1 | ⊢ (𝜑 → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.n | . 2 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
2 | trlsegvdeg.w | . . 3 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
3 | trliswlk 26997 | . . 3 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
4 | trlsegvdeg.v | . . . . . . 7 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | wlkpvtx 26955 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(♯‘𝐹)) → (𝑃‘𝑁) ∈ 𝑉)) |
6 | elfzofz 12779 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → 𝑁 ∈ (0...(♯‘𝐹))) | |
7 | 5, 6 | impel 503 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝑁) ∈ 𝑉) |
8 | 4 | wlkpvtx 26955 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑁 + 1) ∈ (0...(♯‘𝐹)) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
9 | fzofzp1 12859 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (𝑁 + 1) ∈ (0...(♯‘𝐹))) | |
10 | 8, 9 | impel 503 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑃‘(𝑁 + 1)) ∈ 𝑉) |
11 | 7, 10 | jca 509 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
12 | 11 | ex 403 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0..^(♯‘𝐹)) → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))) |
13 | 2, 3, 12 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑁 ∈ (0..^(♯‘𝐹)) → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))) |
14 | 1, 13 | mpd 15 | 1 ⊢ (𝜑 → ((𝑃‘𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 class class class wbr 4872 Fun wfun 6116 ‘cfv 6122 (class class class)co 6904 0cc0 10251 1c1 10252 + caddc 10254 ...cfz 12618 ..^cfzo 12759 ♯chash 13409 Vtxcvtx 26293 iEdgciedg 26294 Walkscwlks 26893 Trailsctrls 26990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-er 8008 df-map 8123 df-pm 8124 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-n0 11618 df-z 11704 df-uz 11968 df-fz 12619 df-fzo 12760 df-hash 13410 df-word 13574 df-wlks 26896 df-trls 26992 |
This theorem is referenced by: eupth2lem3lem3 27606 eupth2lem3lem4 27607 eupth2lem3lem5 27608 |
Copyright terms: Public domain | W3C validator |