| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 6536 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funopg 6550 funsng 6567 f1eq1 6751 f1ssf1 6832 fvn0ssdmfun 7046 funcnvuni 7908 fundmge2nop0 14467 funcnvs2 14879 funcnvs3 14880 funcnvs4 14881 shftfn 15039 isstruct2 17119 structfung 17124 strle1 17128 setsfun 17141 setsfun0 17142 monfval 17694 ismon 17695 monpropd 17699 isepi 17702 isfth 17878 estrres 18100 lubfun 18311 glbfun 18324 acsficl2d 18511 ebtwntg 28909 ecgrtg 28910 elntg 28911 uhgrspansubgrlem 29217 istrl 29624 ispth 29651 isspth 29652 dfpth2 29659 upgrwlkdvspth 29669 uhgrwkspthlem1 29683 uhgrwkspthlem2 29684 usgr2wlkspthlem1 29687 usgr2wlkspthlem2 29688 pthdlem1 29696 2spthd 29871 0spth 30055 3spthd 30105 trlsegvdeglem2 30150 trlsegvdeglem3 30151 ajfun 30789 fresf1o 32555 padct 32643 smatrcl 33786 esum2dlem 34082 omssubadd 34291 sitgf 34338 funen1cnv 35078 pthhashvtx 35115 satfv0fun 35358 satffunlem1 35394 satffunlem2 35395 satffun 35396 satefvfmla0 35405 satefvfmla1 35412 fperdvper 45917 ovnovollem1 46654 funressnmo 47047 dfateq12d 47127 afvres 47173 funressndmafv2rn 47224 afv2res 47240 upgrimpths 47909 fdivval 48528 idfth 49147 idsubc 49149 |
| Copyright terms: Public domain | W3C validator |