Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 6454 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: funopg 6468 funsng 6485 f1eq1 6665 f1ssf1 6748 fvn0ssdmfun 6952 funcnvuni 7778 fundmge2nop0 14206 funcnvs2 14626 funcnvs3 14627 funcnvs4 14628 shftfn 14784 isstruct2 16850 structfung 16855 strle1 16859 setsfun 16872 setsfun0 16873 monfval 17444 ismon 17445 monpropd 17449 isepi 17452 isfth 17630 estrres 17856 lubfun 18070 glbfun 18083 acsficl2d 18270 frlmphl 20988 ebtwntg 27350 ecgrtg 27351 elntg 27352 uhgrspansubgrlem 27657 istrl 28064 ispth 28091 isspth 28092 upgrwlkdvspth 28107 uhgrwkspthlem1 28121 uhgrwkspthlem2 28122 usgr2wlkspthlem1 28125 usgr2wlkspthlem2 28126 pthdlem1 28134 2spthd 28306 0spth 28490 3spthd 28540 trlsegvdeglem2 28585 trlsegvdeglem3 28586 ajfun 29222 fresf1o 30966 padct 31054 smatrcl 31746 esum2dlem 32060 omssubadd 32267 sitgf 32314 funen1cnv 33060 pthhashvtx 33089 satfv0fun 33333 satffunlem1 33369 satffunlem2 33370 satffun 33371 satefvfmla0 33380 satefvfmla1 33387 prjcrv0 40470 fperdvper 43460 ovnovollem1 44194 funressnmo 44540 dfateq12d 44618 afvres 44664 funressndmafv2rn 44715 afv2res 44731 fdivval 45885 |
Copyright terms: Public domain | W3C validator |