Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 6400 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 Fun wfun 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 df-br 5054 df-opab 5116 df-rel 5558 df-cnv 5559 df-co 5560 df-fun 6382 |
This theorem is referenced by: funopg 6414 funsng 6431 f1eq1 6610 f1ssf1 6692 fvn0ssdmfun 6895 funcnvuni 7709 fundmge2nop0 14058 funcnvs2 14478 funcnvs3 14479 funcnvs4 14480 shftfn 14636 isstruct2 16702 structfung 16707 strle1 16711 setsfun 16724 setsfun0 16725 monfval 17237 ismon 17238 monpropd 17242 isepi 17245 isfth 17421 estrres 17646 lubfun 17858 glbfun 17871 acsficl2d 18058 frlmphl 20743 ebtwntg 27073 ecgrtg 27074 elntg 27075 uhgrspansubgrlem 27378 istrl 27784 ispth 27810 isspth 27811 upgrwlkdvspth 27826 uhgrwkspthlem1 27840 uhgrwkspthlem2 27841 usgr2wlkspthlem1 27844 usgr2wlkspthlem2 27845 pthdlem1 27853 2spthd 28025 0spth 28209 3spthd 28259 trlsegvdeglem2 28304 trlsegvdeglem3 28305 ajfun 28941 fresf1o 30685 padct 30774 smatrcl 31460 esum2dlem 31772 omssubadd 31979 sitgf 32026 funen1cnv 32773 pthhashvtx 32802 satfv0fun 33046 satffunlem1 33082 satffunlem2 33083 satffun 33084 satefvfmla0 33093 satefvfmla1 33100 fperdvper 43135 ovnovollem1 43869 funressnmo 44212 dfateq12d 44290 afvres 44336 funressndmafv2rn 44387 afv2res 44403 fdivval 45558 |
Copyright terms: Public domain | W3C validator |