| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 6539 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: funopg 6553 funsng 6570 f1eq1 6754 f1ssf1 6835 fvn0ssdmfun 7049 funcnvuni 7911 fundmge2nop0 14474 funcnvs2 14886 funcnvs3 14887 funcnvs4 14888 shftfn 15046 isstruct2 17126 structfung 17131 strle1 17135 setsfun 17148 setsfun0 17149 monfval 17701 ismon 17702 monpropd 17706 isepi 17709 isfth 17885 estrres 18107 lubfun 18318 glbfun 18331 acsficl2d 18518 ebtwntg 28916 ecgrtg 28917 elntg 28918 uhgrspansubgrlem 29224 istrl 29631 ispth 29658 isspth 29659 dfpth2 29666 upgrwlkdvspth 29676 uhgrwkspthlem1 29690 uhgrwkspthlem2 29691 usgr2wlkspthlem1 29694 usgr2wlkspthlem2 29695 pthdlem1 29703 2spthd 29878 0spth 30062 3spthd 30112 trlsegvdeglem2 30157 trlsegvdeglem3 30158 ajfun 30796 fresf1o 32562 padct 32650 smatrcl 33793 esum2dlem 34089 omssubadd 34298 sitgf 34345 funen1cnv 35085 pthhashvtx 35122 satfv0fun 35365 satffunlem1 35401 satffunlem2 35402 satffun 35403 satefvfmla0 35412 satefvfmla1 35419 fperdvper 45924 ovnovollem1 46661 funressnmo 47051 dfateq12d 47131 afvres 47177 funressndmafv2rn 47228 afv2res 47244 upgrimpths 47913 fdivval 48532 idfth 49151 idsubc 49153 |
| Copyright terms: Public domain | W3C validator |