Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 6504 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 Fun wfun 6473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-br 5093 df-opab 5155 df-rel 5627 df-cnv 5628 df-co 5629 df-fun 6481 |
This theorem is referenced by: funopg 6518 funsng 6535 f1eq1 6716 f1ssf1 6799 fvn0ssdmfun 7008 funcnvuni 7846 fundmge2nop0 14306 funcnvs2 14725 funcnvs3 14726 funcnvs4 14727 shftfn 14883 isstruct2 16947 structfung 16952 strle1 16956 setsfun 16969 setsfun0 16970 monfval 17541 ismon 17542 monpropd 17546 isepi 17549 isfth 17727 estrres 17953 lubfun 18167 glbfun 18180 acsficl2d 18367 frlmphl 21094 ebtwntg 27639 ecgrtg 27640 elntg 27641 uhgrspansubgrlem 27946 istrl 28352 ispth 28379 isspth 28380 upgrwlkdvspth 28395 uhgrwkspthlem1 28409 uhgrwkspthlem2 28410 usgr2wlkspthlem1 28413 usgr2wlkspthlem2 28414 pthdlem1 28422 2spthd 28594 0spth 28778 3spthd 28828 trlsegvdeglem2 28873 trlsegvdeglem3 28874 ajfun 29510 fresf1o 31253 padct 31341 smatrcl 32044 esum2dlem 32358 omssubadd 32567 sitgf 32614 funen1cnv 33359 pthhashvtx 33388 satfv0fun 33632 satffunlem1 33668 satffunlem2 33669 satffun 33670 satefvfmla0 33679 satefvfmla1 33686 fperdvper 43804 ovnovollem1 44539 funressnmo 44899 dfateq12d 44977 afvres 45023 funressndmafv2rn 45074 afv2res 45090 fdivval 46244 |
Copyright terms: Public domain | W3C validator |