| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 6520 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-rel 5638 df-cnv 5639 df-co 5640 df-fun 6501 |
| This theorem is referenced by: funopg 6534 funsng 6551 f1eq1 6733 f1ssf1 6814 fvn0ssdmfun 7028 funcnvuni 7888 fundmge2nop0 14443 funcnvs2 14855 funcnvs3 14856 funcnvs4 14857 shftfn 15015 isstruct2 17095 structfung 17100 strle1 17104 setsfun 17117 setsfun0 17118 monfval 17674 ismon 17675 monpropd 17679 isepi 17682 isfth 17858 estrres 18080 lubfun 18291 glbfun 18304 acsficl2d 18493 ebtwntg 28962 ecgrtg 28963 elntg 28964 uhgrspansubgrlem 29270 istrl 29675 ispth 29701 isspth 29702 dfpth2 29709 upgrwlkdvspth 29719 uhgrwkspthlem1 29733 uhgrwkspthlem2 29734 usgr2wlkspthlem1 29737 usgr2wlkspthlem2 29738 pthdlem1 29746 2spthd 29921 0spth 30105 3spthd 30155 trlsegvdeglem2 30200 trlsegvdeglem3 30201 ajfun 30839 fresf1o 32605 padct 32693 smatrcl 33779 esum2dlem 34075 omssubadd 34284 sitgf 34331 funen1cnv 35071 pthhashvtx 35108 satfv0fun 35351 satffunlem1 35387 satffunlem2 35388 satffun 35389 satefvfmla0 35398 satefvfmla1 35405 fperdvper 45910 ovnovollem1 46647 funressnmo 47040 dfateq12d 47120 afvres 47166 funressndmafv2rn 47217 afv2res 47233 upgrimpths 47902 fdivval 48521 idfth 49140 idsubc 49142 |
| Copyright terms: Public domain | W3C validator |