| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 6502 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fun wfun 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-rel 5626 df-cnv 5627 df-co 5628 df-fun 6484 |
| This theorem is referenced by: funopg 6516 funsng 6533 f1eq1 6715 f1ssf1 6796 fvn0ssdmfun 7008 funcnvuni 7865 fundmge2nop0 14409 funcnvs2 14820 funcnvs3 14821 funcnvs4 14822 shftfn 14980 isstruct2 17060 structfung 17065 strle1 17069 setsfun 17082 setsfun0 17083 monfval 17639 ismon 17640 monpropd 17644 isepi 17647 isfth 17823 estrres 18045 lubfun 18256 glbfun 18269 acsficl2d 18458 ebtwntg 28927 ecgrtg 28928 elntg 28929 uhgrspansubgrlem 29235 istrl 29640 ispth 29666 isspth 29667 dfpth2 29674 upgrwlkdvspth 29684 uhgrwkspthlem1 29698 uhgrwkspthlem2 29699 usgr2wlkspthlem1 29702 usgr2wlkspthlem2 29703 pthdlem1 29711 2spthd 29886 0spth 30070 3spthd 30120 trlsegvdeglem2 30165 trlsegvdeglem3 30166 ajfun 30804 fresf1o 32575 padct 32663 smatrcl 33769 esum2dlem 34065 omssubadd 34274 sitgf 34321 funen1cnv 35061 pthhashvtx 35111 satfv0fun 35354 satffunlem1 35390 satffunlem2 35391 satffun 35392 satefvfmla0 35401 satefvfmla1 35408 fperdvper 45910 ovnovollem1 46647 funressnmo 47040 dfateq12d 47120 afvres 47166 funressndmafv2rn 47217 afv2res 47233 upgrimpths 47903 fdivval 48534 idfth 49153 idsubc 49155 |
| Copyright terms: Public domain | W3C validator |