![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 6598 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-fun 6575 |
This theorem is referenced by: funopg 6612 funsng 6629 f1eq1 6812 f1ssf1 6894 fvn0ssdmfun 7108 funcnvuni 7972 fundmge2nop0 14551 funcnvs2 14962 funcnvs3 14963 funcnvs4 14964 shftfn 15122 isstruct2 17196 structfung 17201 strle1 17205 setsfun 17218 setsfun0 17219 monfval 17793 ismon 17794 monpropd 17798 isepi 17801 isfth 17981 estrres 18208 lubfun 18422 glbfun 18435 acsficl2d 18622 ebtwntg 29015 ecgrtg 29016 elntg 29017 uhgrspansubgrlem 29325 istrl 29732 ispth 29759 isspth 29760 upgrwlkdvspth 29775 uhgrwkspthlem1 29789 uhgrwkspthlem2 29790 usgr2wlkspthlem1 29793 usgr2wlkspthlem2 29794 pthdlem1 29802 2spthd 29974 0spth 30158 3spthd 30208 trlsegvdeglem2 30253 trlsegvdeglem3 30254 ajfun 30892 fresf1o 32650 padct 32733 smatrcl 33742 esum2dlem 34056 omssubadd 34265 sitgf 34312 funen1cnv 35064 pthhashvtx 35095 satfv0fun 35339 satffunlem1 35375 satffunlem2 35376 satffun 35377 satefvfmla0 35386 satefvfmla1 35393 fperdvper 45840 ovnovollem1 46577 funressnmo 46961 dfateq12d 47041 afvres 47087 funressndmafv2rn 47138 afv2res 47154 fdivval 48273 |
Copyright terms: Public domain | W3C validator |