| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 6556 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funopg 6570 funsng 6587 f1eq1 6769 f1ssf1 6850 fvn0ssdmfun 7064 funcnvuni 7928 fundmge2nop0 14520 funcnvs2 14932 funcnvs3 14933 funcnvs4 14934 shftfn 15092 isstruct2 17168 structfung 17173 strle1 17177 setsfun 17190 setsfun0 17191 monfval 17745 ismon 17746 monpropd 17750 isepi 17753 isfth 17929 estrres 18151 lubfun 18362 glbfun 18375 acsficl2d 18562 ebtwntg 28961 ecgrtg 28962 elntg 28963 uhgrspansubgrlem 29269 istrl 29676 ispth 29703 isspth 29704 dfpth2 29711 upgrwlkdvspth 29721 uhgrwkspthlem1 29735 uhgrwkspthlem2 29736 usgr2wlkspthlem1 29739 usgr2wlkspthlem2 29740 pthdlem1 29748 2spthd 29923 0spth 30107 3spthd 30157 trlsegvdeglem2 30202 trlsegvdeglem3 30203 ajfun 30841 fresf1o 32609 padct 32697 smatrcl 33827 esum2dlem 34123 omssubadd 34332 sitgf 34379 funen1cnv 35119 pthhashvtx 35150 satfv0fun 35393 satffunlem1 35429 satffunlem2 35430 satffun 35431 satefvfmla0 35440 satefvfmla1 35447 fperdvper 45948 ovnovollem1 46685 funressnmo 47075 dfateq12d 47155 afvres 47201 funressndmafv2rn 47252 afv2res 47268 upgrimpths 47922 fdivval 48519 idfth 49098 idsubc 49099 |
| Copyright terms: Public domain | W3C validator |