Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version |
Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
Ref | Expression |
---|---|
funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | funeq 6438 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: funopg 6452 funsng 6469 f1eq1 6649 f1ssf1 6731 fvn0ssdmfun 6934 funcnvuni 7752 fundmge2nop0 14134 funcnvs2 14554 funcnvs3 14555 funcnvs4 14556 shftfn 14712 isstruct2 16778 structfung 16783 strle1 16787 setsfun 16800 setsfun0 16801 monfval 17361 ismon 17362 monpropd 17366 isepi 17369 isfth 17546 estrres 17772 lubfun 17985 glbfun 17998 acsficl2d 18185 frlmphl 20898 ebtwntg 27253 ecgrtg 27254 elntg 27255 uhgrspansubgrlem 27560 istrl 27966 ispth 27992 isspth 27993 upgrwlkdvspth 28008 uhgrwkspthlem1 28022 uhgrwkspthlem2 28023 usgr2wlkspthlem1 28026 usgr2wlkspthlem2 28027 pthdlem1 28035 2spthd 28207 0spth 28391 3spthd 28441 trlsegvdeglem2 28486 trlsegvdeglem3 28487 ajfun 29123 fresf1o 30867 padct 30956 smatrcl 31648 esum2dlem 31960 omssubadd 32167 sitgf 32214 funen1cnv 32960 pthhashvtx 32989 satfv0fun 33233 satffunlem1 33269 satffunlem2 33270 satffun 33271 satefvfmla0 33280 satefvfmla1 33287 fperdvper 43350 ovnovollem1 44084 funressnmo 44427 dfateq12d 44505 afvres 44551 funressndmafv2rn 44602 afv2res 44618 fdivval 45773 |
Copyright terms: Public domain | W3C validator |