| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funeqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the function predicate. (Contributed by NM, 23-Feb-2013.) |
| Ref | Expression |
|---|---|
| funeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| funeqd | ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | funeq 6501 | . 2 ⊢ (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Fun 𝐴 ↔ Fun 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6483 |
| This theorem is referenced by: funopg 6515 funsng 6532 f1eq1 6714 f1ssf1 6795 fvn0ssdmfun 7007 funcnvuni 7862 fundmge2nop0 14409 funcnvs2 14820 funcnvs3 14821 funcnvs4 14822 shftfn 14980 isstruct2 17060 structfung 17065 strle1 17069 setsfun 17082 setsfun0 17083 monfval 17639 ismon 17640 monpropd 17644 isepi 17647 isfth 17823 estrres 18045 lubfun 18256 glbfun 18269 acsficl2d 18458 ebtwntg 28960 ecgrtg 28961 elntg 28962 uhgrspansubgrlem 29268 istrl 29673 ispth 29699 isspth 29700 dfpth2 29707 upgrwlkdvspth 29717 uhgrwkspthlem1 29731 uhgrwkspthlem2 29732 usgr2wlkspthlem1 29735 usgr2wlkspthlem2 29736 pthdlem1 29744 2spthd 29919 0spth 30106 3spthd 30156 trlsegvdeglem2 30201 trlsegvdeglem3 30202 ajfun 30840 fresf1o 32613 padct 32701 smatrcl 33809 esum2dlem 34105 omssubadd 34313 sitgf 34360 funen1cnv 35100 pthhashvtx 35172 satfv0fun 35415 satffunlem1 35451 satffunlem2 35452 satffun 35453 satefvfmla0 35462 satefvfmla1 35469 fperdvper 46016 ovnovollem1 46753 funressnmo 47145 dfateq12d 47225 afvres 47271 funressndmafv2rn 47322 afv2res 47338 upgrimpths 48008 fdivval 48639 idfth 49258 idsubc 49260 |
| Copyright terms: Public domain | W3C validator |