Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trlsegvdeg | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2lem3 28185: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
trlsegvdeg | ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (iEdg‘𝑋) = (iEdg‘𝑋) | |
2 | eqid 2739 | . 2 ⊢ (iEdg‘𝑌) = (iEdg‘𝑌) | |
3 | eqid 2739 | . 2 ⊢ (Vtx‘𝑋) = (Vtx‘𝑋) | |
4 | trlsegvdeg.vy | . . 3 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
5 | trlsegvdeg.vx | . . 3 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
6 | 4, 5 | eqtr4d 2777 | . 2 ⊢ (𝜑 → (Vtx‘𝑌) = (Vtx‘𝑋)) |
7 | trlsegvdeg.vz | . . 3 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
8 | 7, 5 | eqtr4d 2777 | . 2 ⊢ (𝜑 → (Vtx‘𝑍) = (Vtx‘𝑋)) |
9 | trlsegvdeg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | trlsegvdeg.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
11 | trlsegvdeg.f | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
12 | trlsegvdeg.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
13 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
14 | trlsegvdeg.w | . . . . 5 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
15 | trlsegvdeg.ix | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
16 | trlsegvdeg.iy | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
17 | trlsegvdeg.iz | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
18 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem4 28172 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
19 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem5 28173 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
20 | 18, 19 | ineq12d 4114 | . . 3 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)})) |
21 | fzonel 13154 | . . . . . . 7 ⊢ ¬ 𝑁 ∈ (0..^𝑁) | |
22 | 10 | trlf1 27652 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
23 | 14, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
24 | elfzouz2 13155 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
25 | fzoss2 13168 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
26 | 12, 24, 25 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
27 | f1elima 7044 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑁 ∈ (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) | |
28 | 23, 12, 26, 27 | syl3anc 1372 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) |
29 | 21, 28 | mtbiri 330 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁))) |
30 | 29 | orcd 872 | . . . . 5 ⊢ (𝜑 → (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
31 | ianor 981 | . . . . . 6 ⊢ (¬ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) | |
32 | elin 3869 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼)) | |
33 | 31, 32 | xchnxbir 336 | . . . . 5 ⊢ (¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
34 | 30, 33 | sylibr 237 | . . . 4 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
35 | disjsn 4612 | . . . 4 ⊢ ((((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅ ↔ ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) | |
36 | 34, 35 | sylibr 237 | . . 3 ⊢ (𝜑 → (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅) |
37 | 20, 36 | eqtrd 2774 | . 2 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = ∅) |
38 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem2 28170 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
39 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem3 28171 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑌)) |
40 | 13, 5 | eleqtrrd 2837 | . 2 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑋)) |
41 | f1f 6584 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
42 | 14, 22, 41 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
43 | 11, 42, 12 | resunimafz0 13907 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
44 | 15, 16 | uneq12d 4064 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑋) ∪ (iEdg‘𝑌)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
45 | 43, 17, 44 | 3eqtr4d 2784 | . 2 ⊢ (𝜑 → (iEdg‘𝑍) = ((iEdg‘𝑋) ∪ (iEdg‘𝑌))) |
46 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem6 28174 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
47 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem7 28175 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
48 | 1, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47 | vtxdfiun 27436 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ∪ cun 3851 ∩ cin 3852 ⊆ wss 3853 ∅c0 4221 {csn 4526 〈cop 4532 class class class wbr 5040 dom cdm 5535 ↾ cres 5537 “ cima 5538 Fun wfun 6343 ⟶wf 6345 –1-1→wf1 6346 ‘cfv 6349 (class class class)co 7182 0cc0 10627 + caddc 10630 ℤ≥cuz 12336 ...cfz 12993 ..^cfzo 13136 ♯chash 13794 Vtxcvtx 26953 iEdgciedg 26954 VtxDegcvtxdg 27419 Trailsctrls 27644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-oadd 8147 df-er 8332 df-map 8451 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-dju 9415 df-card 9453 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-n0 11989 df-xnn0 12061 df-z 12075 df-uz 12337 df-xadd 12603 df-fz 12994 df-fzo 13137 df-hash 13795 df-word 13968 df-vtxdg 27420 df-wlks 27553 df-trls 27646 |
This theorem is referenced by: eupth2lem3lem7 28183 |
Copyright terms: Public domain | W3C validator |