Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trlsegvdeg | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2lem3 28501: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
trlsegvdeg | ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (iEdg‘𝑋) = (iEdg‘𝑋) | |
2 | eqid 2738 | . 2 ⊢ (iEdg‘𝑌) = (iEdg‘𝑌) | |
3 | eqid 2738 | . 2 ⊢ (Vtx‘𝑋) = (Vtx‘𝑋) | |
4 | trlsegvdeg.vy | . . 3 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
5 | trlsegvdeg.vx | . . 3 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
6 | 4, 5 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (Vtx‘𝑌) = (Vtx‘𝑋)) |
7 | trlsegvdeg.vz | . . 3 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
8 | 7, 5 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (Vtx‘𝑍) = (Vtx‘𝑋)) |
9 | trlsegvdeg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | trlsegvdeg.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
11 | trlsegvdeg.f | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
12 | trlsegvdeg.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
13 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
14 | trlsegvdeg.w | . . . . 5 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
15 | trlsegvdeg.ix | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
16 | trlsegvdeg.iy | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
17 | trlsegvdeg.iz | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
18 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem4 28488 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
19 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem5 28489 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
20 | 18, 19 | ineq12d 4144 | . . 3 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)})) |
21 | fzonel 13329 | . . . . . . 7 ⊢ ¬ 𝑁 ∈ (0..^𝑁) | |
22 | 10 | trlf1 27968 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
23 | 14, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
24 | elfzouz2 13330 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
25 | fzoss2 13343 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
26 | 12, 24, 25 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
27 | f1elima 7117 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑁 ∈ (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) | |
28 | 23, 12, 26, 27 | syl3anc 1369 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) |
29 | 21, 28 | mtbiri 326 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁))) |
30 | 29 | orcd 869 | . . . . 5 ⊢ (𝜑 → (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
31 | ianor 978 | . . . . . 6 ⊢ (¬ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) | |
32 | elin 3899 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼)) | |
33 | 31, 32 | xchnxbir 332 | . . . . 5 ⊢ (¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
34 | 30, 33 | sylibr 233 | . . . 4 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
35 | disjsn 4644 | . . . 4 ⊢ ((((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅ ↔ ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) | |
36 | 34, 35 | sylibr 233 | . . 3 ⊢ (𝜑 → (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅) |
37 | 20, 36 | eqtrd 2778 | . 2 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = ∅) |
38 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem2 28486 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
39 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem3 28487 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑌)) |
40 | 13, 5 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑋)) |
41 | f1f 6654 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
42 | 14, 22, 41 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
43 | 11, 42, 12 | resunimafz0 14085 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
44 | 15, 16 | uneq12d 4094 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑋) ∪ (iEdg‘𝑌)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
45 | 43, 17, 44 | 3eqtr4d 2788 | . 2 ⊢ (𝜑 → (iEdg‘𝑍) = ((iEdg‘𝑋) ∪ (iEdg‘𝑌))) |
46 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem6 28490 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
47 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem7 28491 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
48 | 1, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47 | vtxdfiun 27752 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 “ cima 5583 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 Trailsctrls 27960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-vtxdg 27736 df-wlks 27869 df-trls 27962 |
This theorem is referenced by: eupth2lem3lem7 28499 |
Copyright terms: Public domain | W3C validator |