Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. 2
β’
(iEdgβπ) =
(iEdgβπ) |
2 | | eqid 2732 |
. 2
β’
(iEdgβπ) =
(iEdgβπ) |
3 | | eqid 2732 |
. 2
β’
(Vtxβπ) =
(Vtxβπ) |
4 | | trlsegvdeg.vy |
. . 3
β’ (π β (Vtxβπ) = π) |
5 | | trlsegvdeg.vx |
. . 3
β’ (π β (Vtxβπ) = π) |
6 | 4, 5 | eqtr4d 2775 |
. 2
β’ (π β (Vtxβπ) = (Vtxβπ)) |
7 | | trlsegvdeg.vz |
. . 3
β’ (π β (Vtxβπ) = π) |
8 | 7, 5 | eqtr4d 2775 |
. 2
β’ (π β (Vtxβπ) = (Vtxβπ)) |
9 | | trlsegvdeg.v |
. . . . 5
β’ π = (VtxβπΊ) |
10 | | trlsegvdeg.i |
. . . . 5
β’ πΌ = (iEdgβπΊ) |
11 | | trlsegvdeg.f |
. . . . 5
β’ (π β Fun πΌ) |
12 | | trlsegvdeg.n |
. . . . 5
β’ (π β π β (0..^(β―βπΉ))) |
13 | | trlsegvdeg.u |
. . . . 5
β’ (π β π β π) |
14 | | trlsegvdeg.w |
. . . . 5
β’ (π β πΉ(TrailsβπΊ)π) |
15 | | trlsegvdeg.ix |
. . . . 5
β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
16 | | trlsegvdeg.iy |
. . . . 5
β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
17 | | trlsegvdeg.iz |
. . . . 5
β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
18 | 9, 10, 11, 12, 13, 14, 5, 4, 7,
15, 16, 17 | trlsegvdeglem4 29465 |
. . . 4
β’ (π β dom (iEdgβπ) = ((πΉ β (0..^π)) β© dom πΌ)) |
19 | 9, 10, 11, 12, 13, 14, 5, 4, 7,
15, 16, 17 | trlsegvdeglem5 29466 |
. . . 4
β’ (π β dom (iEdgβπ) = {(πΉβπ)}) |
20 | 18, 19 | ineq12d 4212 |
. . 3
β’ (π β (dom (iEdgβπ) β© dom (iEdgβπ)) = (((πΉ β (0..^π)) β© dom πΌ) β© {(πΉβπ)})) |
21 | | fzonel 13642 |
. . . . . . 7
β’ Β¬
π β (0..^π) |
22 | 10 | trlf1 28944 |
. . . . . . . . 9
β’ (πΉ(TrailsβπΊ)π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
23 | 14, 22 | syl 17 |
. . . . . . . 8
β’ (π β πΉ:(0..^(β―βπΉ))β1-1βdom πΌ) |
24 | | elfzouz2 13643 |
. . . . . . . . 9
β’ (π β
(0..^(β―βπΉ))
β (β―βπΉ)
β (β€β₯βπ)) |
25 | | fzoss2 13656 |
. . . . . . . . 9
β’
((β―βπΉ)
β (β€β₯βπ) β (0..^π) β (0..^(β―βπΉ))) |
26 | 12, 24, 25 | 3syl 18 |
. . . . . . . 8
β’ (π β (0..^π) β (0..^(β―βπΉ))) |
27 | | f1elima 7258 |
. . . . . . . 8
β’ ((πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β§ π β (0..^(β―βπΉ)) β§ (0..^π) β (0..^(β―βπΉ))) β ((πΉβπ) β (πΉ β (0..^π)) β π β (0..^π))) |
28 | 23, 12, 26, 27 | syl3anc 1371 |
. . . . . . 7
β’ (π β ((πΉβπ) β (πΉ β (0..^π)) β π β (0..^π))) |
29 | 21, 28 | mtbiri 326 |
. . . . . 6
β’ (π β Β¬ (πΉβπ) β (πΉ β (0..^π))) |
30 | 29 | orcd 871 |
. . . . 5
β’ (π β (Β¬ (πΉβπ) β (πΉ β (0..^π)) β¨ Β¬ (πΉβπ) β dom πΌ)) |
31 | | ianor 980 |
. . . . . 6
β’ (Β¬
((πΉβπ) β (πΉ β (0..^π)) β§ (πΉβπ) β dom πΌ) β (Β¬ (πΉβπ) β (πΉ β (0..^π)) β¨ Β¬ (πΉβπ) β dom πΌ)) |
32 | | elin 3963 |
. . . . . 6
β’ ((πΉβπ) β ((πΉ β (0..^π)) β© dom πΌ) β ((πΉβπ) β (πΉ β (0..^π)) β§ (πΉβπ) β dom πΌ)) |
33 | 31, 32 | xchnxbir 332 |
. . . . 5
β’ (Β¬
(πΉβπ) β ((πΉ β (0..^π)) β© dom πΌ) β (Β¬ (πΉβπ) β (πΉ β (0..^π)) β¨ Β¬ (πΉβπ) β dom πΌ)) |
34 | 30, 33 | sylibr 233 |
. . . 4
β’ (π β Β¬ (πΉβπ) β ((πΉ β (0..^π)) β© dom πΌ)) |
35 | | disjsn 4714 |
. . . 4
β’ ((((πΉ β (0..^π)) β© dom πΌ) β© {(πΉβπ)}) = β
β Β¬ (πΉβπ) β ((πΉ β (0..^π)) β© dom πΌ)) |
36 | 34, 35 | sylibr 233 |
. . 3
β’ (π β (((πΉ β (0..^π)) β© dom πΌ) β© {(πΉβπ)}) = β
) |
37 | 20, 36 | eqtrd 2772 |
. 2
β’ (π β (dom (iEdgβπ) β© dom (iEdgβπ)) = β
) |
38 | 9, 10, 11, 12, 13, 14, 5, 4, 7,
15, 16, 17 | trlsegvdeglem2 29463 |
. 2
β’ (π β Fun (iEdgβπ)) |
39 | 9, 10, 11, 12, 13, 14, 5, 4, 7,
15, 16, 17 | trlsegvdeglem3 29464 |
. 2
β’ (π β Fun (iEdgβπ)) |
40 | 13, 5 | eleqtrrd 2836 |
. 2
β’ (π β π β (Vtxβπ)) |
41 | | f1f 6784 |
. . . . 5
β’ (πΉ:(0..^(β―βπΉ))β1-1βdom πΌ β πΉ:(0..^(β―βπΉ))βΆdom πΌ) |
42 | 14, 22, 41 | 3syl 18 |
. . . 4
β’ (π β πΉ:(0..^(β―βπΉ))βΆdom πΌ) |
43 | 11, 42, 12 | resunimafz0 14400 |
. . 3
β’ (π β (πΌ βΎ (πΉ β (0...π))) = ((πΌ βΎ (πΉ β (0..^π))) βͺ {β¨(πΉβπ), (πΌβ(πΉβπ))β©})) |
44 | 15, 16 | uneq12d 4163 |
. . 3
β’ (π β ((iEdgβπ) βͺ (iEdgβπ)) = ((πΌ βΎ (πΉ β (0..^π))) βͺ {β¨(πΉβπ), (πΌβ(πΉβπ))β©})) |
45 | 43, 17, 44 | 3eqtr4d 2782 |
. 2
β’ (π β (iEdgβπ) = ((iEdgβπ) βͺ (iEdgβπ))) |
46 | 9, 10, 11, 12, 13, 14, 5, 4, 7,
15, 16, 17 | trlsegvdeglem6 29467 |
. 2
β’ (π β dom (iEdgβπ) β Fin) |
47 | 9, 10, 11, 12, 13, 14, 5, 4, 7,
15, 16, 17 | trlsegvdeglem7 29468 |
. 2
β’ (π β dom (iEdgβπ) β Fin) |
48 | 1, 2, 3, 6, 8, 37,
38, 39, 40, 45, 46, 47 | vtxdfiun 28728 |
1
β’ (π β ((VtxDegβπ)βπ) = (((VtxDegβπ)βπ) + ((VtxDegβπ)βπ))) |