Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > trlsegvdeg | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2lem3 28600: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
trlsegvdeg | ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (iEdg‘𝑋) = (iEdg‘𝑋) | |
2 | eqid 2738 | . 2 ⊢ (iEdg‘𝑌) = (iEdg‘𝑌) | |
3 | eqid 2738 | . 2 ⊢ (Vtx‘𝑋) = (Vtx‘𝑋) | |
4 | trlsegvdeg.vy | . . 3 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
5 | trlsegvdeg.vx | . . 3 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
6 | 4, 5 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (Vtx‘𝑌) = (Vtx‘𝑋)) |
7 | trlsegvdeg.vz | . . 3 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
8 | 7, 5 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (Vtx‘𝑍) = (Vtx‘𝑋)) |
9 | trlsegvdeg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | trlsegvdeg.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
11 | trlsegvdeg.f | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
12 | trlsegvdeg.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
13 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
14 | trlsegvdeg.w | . . . . 5 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
15 | trlsegvdeg.ix | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
16 | trlsegvdeg.iy | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
17 | trlsegvdeg.iz | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
18 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem4 28587 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
19 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem5 28588 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
20 | 18, 19 | ineq12d 4147 | . . 3 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)})) |
21 | fzonel 13401 | . . . . . . 7 ⊢ ¬ 𝑁 ∈ (0..^𝑁) | |
22 | 10 | trlf1 28066 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
23 | 14, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
24 | elfzouz2 13402 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
25 | fzoss2 13415 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
26 | 12, 24, 25 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
27 | f1elima 7136 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑁 ∈ (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) | |
28 | 23, 12, 26, 27 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) |
29 | 21, 28 | mtbiri 327 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁))) |
30 | 29 | orcd 870 | . . . . 5 ⊢ (𝜑 → (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
31 | ianor 979 | . . . . . 6 ⊢ (¬ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) | |
32 | elin 3903 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼)) | |
33 | 31, 32 | xchnxbir 333 | . . . . 5 ⊢ (¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
34 | 30, 33 | sylibr 233 | . . . 4 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
35 | disjsn 4647 | . . . 4 ⊢ ((((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅ ↔ ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) | |
36 | 34, 35 | sylibr 233 | . . 3 ⊢ (𝜑 → (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅) |
37 | 20, 36 | eqtrd 2778 | . 2 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = ∅) |
38 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem2 28585 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
39 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem3 28586 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑌)) |
40 | 13, 5 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑋)) |
41 | f1f 6670 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
42 | 14, 22, 41 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
43 | 11, 42, 12 | resunimafz0 14157 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
44 | 15, 16 | uneq12d 4098 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑋) ∪ (iEdg‘𝑌)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
45 | 43, 17, 44 | 3eqtr4d 2788 | . 2 ⊢ (𝜑 → (iEdg‘𝑍) = ((iEdg‘𝑋) ∪ (iEdg‘𝑌))) |
46 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem6 28589 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
47 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem7 28590 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
48 | 1, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47 | vtxdfiun 27849 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5074 dom cdm 5589 ↾ cres 5591 “ cima 5592 Fun wfun 6427 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 0cc0 10871 + caddc 10874 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Vtxcvtx 27366 iEdgciedg 27367 VtxDegcvtxdg 27832 Trailsctrls 28058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-xadd 12849 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-vtxdg 27833 df-wlks 27966 df-trls 28060 |
This theorem is referenced by: eupth2lem3lem7 28598 |
Copyright terms: Public domain | W3C validator |