MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeg Structured version   Visualization version   GIF version

Theorem trlsegvdeg 29469
Description: Formerly part of proof of eupth2lem3 29478: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph π‘Œ with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex π‘ˆ of 𝐺 within 𝑍 is the sum of the vertex degree of π‘ˆ within 𝑋 and the vertex degree of π‘ˆ within π‘Œ. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtxβ€˜πΊ)
trlsegvdeg.i 𝐼 = (iEdgβ€˜πΊ)
trlsegvdeg.f (πœ‘ β†’ Fun 𝐼)
trlsegvdeg.n (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
trlsegvdeg.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
trlsegvdeg.w (πœ‘ β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
trlsegvdeg.vx (πœ‘ β†’ (Vtxβ€˜π‘‹) = 𝑉)
trlsegvdeg.vy (πœ‘ β†’ (Vtxβ€˜π‘Œ) = 𝑉)
trlsegvdeg.vz (πœ‘ β†’ (Vtxβ€˜π‘) = 𝑉)
trlsegvdeg.ix (πœ‘ β†’ (iEdgβ€˜π‘‹) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
trlsegvdeg.iy (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
trlsegvdeg.iz (πœ‘ β†’ (iEdgβ€˜π‘) = (𝐼 β†Ύ (𝐹 β€œ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeg (πœ‘ β†’ ((VtxDegβ€˜π‘)β€˜π‘ˆ) = (((VtxDegβ€˜π‘‹)β€˜π‘ˆ) + ((VtxDegβ€˜π‘Œ)β€˜π‘ˆ)))

Proof of Theorem trlsegvdeg
StepHypRef Expression
1 eqid 2732 . 2 (iEdgβ€˜π‘‹) = (iEdgβ€˜π‘‹)
2 eqid 2732 . 2 (iEdgβ€˜π‘Œ) = (iEdgβ€˜π‘Œ)
3 eqid 2732 . 2 (Vtxβ€˜π‘‹) = (Vtxβ€˜π‘‹)
4 trlsegvdeg.vy . . 3 (πœ‘ β†’ (Vtxβ€˜π‘Œ) = 𝑉)
5 trlsegvdeg.vx . . 3 (πœ‘ β†’ (Vtxβ€˜π‘‹) = 𝑉)
64, 5eqtr4d 2775 . 2 (πœ‘ β†’ (Vtxβ€˜π‘Œ) = (Vtxβ€˜π‘‹))
7 trlsegvdeg.vz . . 3 (πœ‘ β†’ (Vtxβ€˜π‘) = 𝑉)
87, 5eqtr4d 2775 . 2 (πœ‘ β†’ (Vtxβ€˜π‘) = (Vtxβ€˜π‘‹))
9 trlsegvdeg.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
10 trlsegvdeg.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
11 trlsegvdeg.f . . . . 5 (πœ‘ β†’ Fun 𝐼)
12 trlsegvdeg.n . . . . 5 (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
13 trlsegvdeg.u . . . . 5 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
14 trlsegvdeg.w . . . . 5 (πœ‘ β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
15 trlsegvdeg.ix . . . . 5 (πœ‘ β†’ (iEdgβ€˜π‘‹) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
16 trlsegvdeg.iy . . . . 5 (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
17 trlsegvdeg.iz . . . . 5 (πœ‘ β†’ (iEdgβ€˜π‘) = (𝐼 β†Ύ (𝐹 β€œ (0...𝑁))))
189, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem4 29465 . . . 4 (πœ‘ β†’ dom (iEdgβ€˜π‘‹) = ((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼))
199, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem5 29466 . . . 4 (πœ‘ β†’ dom (iEdgβ€˜π‘Œ) = {(πΉβ€˜π‘)})
2018, 19ineq12d 4212 . . 3 (πœ‘ β†’ (dom (iEdgβ€˜π‘‹) ∩ dom (iEdgβ€˜π‘Œ)) = (((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼) ∩ {(πΉβ€˜π‘)}))
21 fzonel 13642 . . . . . . 7 Β¬ 𝑁 ∈ (0..^𝑁)
2210trlf1 28944 . . . . . . . . 9 (𝐹(Trailsβ€˜πΊ)𝑃 β†’ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐼)
2314, 22syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐼)
24 elfzouz2 13643 . . . . . . . . 9 (𝑁 ∈ (0..^(β™―β€˜πΉ)) β†’ (β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘))
25 fzoss2 13656 . . . . . . . . 9 ((β™―β€˜πΉ) ∈ (β„€β‰₯β€˜π‘) β†’ (0..^𝑁) βŠ† (0..^(β™―β€˜πΉ)))
2612, 24, 253syl 18 . . . . . . . 8 (πœ‘ β†’ (0..^𝑁) βŠ† (0..^(β™―β€˜πΉ)))
27 f1elima 7258 . . . . . . . 8 ((𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐼 ∧ 𝑁 ∈ (0..^(β™―β€˜πΉ)) ∧ (0..^𝑁) βŠ† (0..^(β™―β€˜πΉ))) β†’ ((πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁)))
2823, 12, 26, 27syl3anc 1371 . . . . . . 7 (πœ‘ β†’ ((πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁)))
2921, 28mtbiri 326 . . . . . 6 (πœ‘ β†’ Β¬ (πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)))
3029orcd 871 . . . . 5 (πœ‘ β†’ (Β¬ (πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ∨ Β¬ (πΉβ€˜π‘) ∈ dom 𝐼))
31 ianor 980 . . . . . 6 (Β¬ ((πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ∧ (πΉβ€˜π‘) ∈ dom 𝐼) ↔ (Β¬ (πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ∨ Β¬ (πΉβ€˜π‘) ∈ dom 𝐼))
32 elin 3963 . . . . . 6 ((πΉβ€˜π‘) ∈ ((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼) ↔ ((πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ∧ (πΉβ€˜π‘) ∈ dom 𝐼))
3331, 32xchnxbir 332 . . . . 5 (Β¬ (πΉβ€˜π‘) ∈ ((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼) ↔ (Β¬ (πΉβ€˜π‘) ∈ (𝐹 β€œ (0..^𝑁)) ∨ Β¬ (πΉβ€˜π‘) ∈ dom 𝐼))
3430, 33sylibr 233 . . . 4 (πœ‘ β†’ Β¬ (πΉβ€˜π‘) ∈ ((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼))
35 disjsn 4714 . . . 4 ((((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼) ∩ {(πΉβ€˜π‘)}) = βˆ… ↔ Β¬ (πΉβ€˜π‘) ∈ ((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼))
3634, 35sylibr 233 . . 3 (πœ‘ β†’ (((𝐹 β€œ (0..^𝑁)) ∩ dom 𝐼) ∩ {(πΉβ€˜π‘)}) = βˆ…)
3720, 36eqtrd 2772 . 2 (πœ‘ β†’ (dom (iEdgβ€˜π‘‹) ∩ dom (iEdgβ€˜π‘Œ)) = βˆ…)
389, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem2 29463 . 2 (πœ‘ β†’ Fun (iEdgβ€˜π‘‹))
399, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem3 29464 . 2 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))
4013, 5eleqtrrd 2836 . 2 (πœ‘ β†’ π‘ˆ ∈ (Vtxβ€˜π‘‹))
41 f1f 6784 . . . . 5 (𝐹:(0..^(β™―β€˜πΉ))–1-1β†’dom 𝐼 β†’ 𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐼)
4214, 22, 413syl 18 . . . 4 (πœ‘ β†’ 𝐹:(0..^(β™―β€˜πΉ))⟢dom 𝐼)
4311, 42, 12resunimafz0 14400 . . 3 (πœ‘ β†’ (𝐼 β†Ύ (𝐹 β€œ (0...𝑁))) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))) βˆͺ {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩}))
4415, 16uneq12d 4163 . . 3 (πœ‘ β†’ ((iEdgβ€˜π‘‹) βˆͺ (iEdgβ€˜π‘Œ)) = ((𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))) βˆͺ {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩}))
4543, 17, 443eqtr4d 2782 . 2 (πœ‘ β†’ (iEdgβ€˜π‘) = ((iEdgβ€˜π‘‹) βˆͺ (iEdgβ€˜π‘Œ)))
469, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem6 29467 . 2 (πœ‘ β†’ dom (iEdgβ€˜π‘‹) ∈ Fin)
479, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem7 29468 . 2 (πœ‘ β†’ dom (iEdgβ€˜π‘Œ) ∈ Fin)
481, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47vtxdfiun 28728 1 (πœ‘ β†’ ((VtxDegβ€˜π‘)β€˜π‘ˆ) = (((VtxDegβ€˜π‘‹)β€˜π‘ˆ) + ((VtxDegβ€˜π‘Œ)β€˜π‘ˆ)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  {csn 4627  βŸ¨cop 4633   class class class wbr 5147  dom cdm 5675   β†Ύ cres 5677   β€œ cima 5678  Fun wfun 6534  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€˜cfv 6540  (class class class)co 7405  0cc0 11106   + caddc 11109  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Vtxcvtx 28245  iEdgciedg 28246  VtxDegcvtxdg 28711  Trailsctrls 28936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-xadd 13089  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-vtxdg 28712  df-wlks 28845  df-trls 28938
This theorem is referenced by:  eupth2lem3lem7  29476
  Copyright terms: Public domain W3C validator