MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem3 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem3 30169
Description: Lemma for trlsegvdeg 30174. (Contributed by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem3 (𝜑 → Fun (iEdg‘𝑌))

Proof of Theorem trlsegvdeglem3
StepHypRef Expression
1 fvex 6899 . . . 4 (𝐹𝑁) ∈ V
2 fvex 6899 . . . 4 (𝐼‘(𝐹𝑁)) ∈ V
31, 2pm3.2i 470 . . 3 ((𝐹𝑁) ∈ V ∧ (𝐼‘(𝐹𝑁)) ∈ V)
4 funsng 6597 . . 3 (((𝐹𝑁) ∈ V ∧ (𝐼‘(𝐹𝑁)) ∈ V) → Fun {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
53, 4mp1i 13 . 2 (𝜑 → Fun {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
6 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
76funeqd 6568 . 2 (𝜑 → (Fun (iEdg‘𝑌) ↔ Fun {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
85, 7mpbird 257 1 (𝜑 → Fun (iEdg‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  cop 4612   class class class wbr 5123  cres 5667  cima 5668  Fun wfun 6535  cfv 6541  (class class class)co 7413  0cc0 11137  ...cfz 13529  ..^cfzo 13676  chash 14351  Vtxcvtx 28941  iEdgciedg 28942  Trailsctrls 29636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-iota 6494  df-fun 6543  df-fv 6549
This theorem is referenced by:  trlsegvdeg  30174
  Copyright terms: Public domain W3C validator