![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem3 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 30272. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
trlsegvdeglem3 | ⊢ (𝜑 → Fun (iEdg‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6927 | . . . 4 ⊢ (𝐹‘𝑁) ∈ V | |
2 | fvex 6927 | . . . 4 ⊢ (𝐼‘(𝐹‘𝑁)) ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ((𝐹‘𝑁) ∈ V ∧ (𝐼‘(𝐹‘𝑁)) ∈ V) |
4 | funsng 6625 | . . 3 ⊢ (((𝐹‘𝑁) ∈ V ∧ (𝐼‘(𝐹‘𝑁)) ∈ V) → Fun {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ (𝜑 → Fun {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
6 | trlsegvdeg.iy | . . 3 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
7 | 6 | funeqd 6596 | . 2 ⊢ (𝜑 → (Fun (iEdg‘𝑌) ↔ Fun {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
8 | 5, 7 | mpbird 257 | 1 ⊢ (𝜑 → Fun (iEdg‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 {csn 4634 〈cop 4640 class class class wbr 5151 ↾ cres 5695 “ cima 5696 Fun wfun 6563 ‘cfv 6569 (class class class)co 7438 0cc0 11162 ...cfz 13553 ..^cfzo 13700 ♯chash 14375 Vtxcvtx 29039 iEdgciedg 29040 Trailsctrls 29734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-iota 6522 df-fun 6571 df-fv 6577 |
This theorem is referenced by: trlsegvdeg 30272 |
Copyright terms: Public domain | W3C validator |