MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem3 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem3 30071
Description: Lemma for trlsegvdeg 30076. (Contributed by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtxβ€˜πΊ)
trlsegvdeg.i 𝐼 = (iEdgβ€˜πΊ)
trlsegvdeg.f (πœ‘ β†’ Fun 𝐼)
trlsegvdeg.n (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
trlsegvdeg.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
trlsegvdeg.w (πœ‘ β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
trlsegvdeg.vx (πœ‘ β†’ (Vtxβ€˜π‘‹) = 𝑉)
trlsegvdeg.vy (πœ‘ β†’ (Vtxβ€˜π‘Œ) = 𝑉)
trlsegvdeg.vz (πœ‘ β†’ (Vtxβ€˜π‘) = 𝑉)
trlsegvdeg.ix (πœ‘ β†’ (iEdgβ€˜π‘‹) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
trlsegvdeg.iy (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
trlsegvdeg.iz (πœ‘ β†’ (iEdgβ€˜π‘) = (𝐼 β†Ύ (𝐹 β€œ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem3 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))

Proof of Theorem trlsegvdeglem3
StepHypRef Expression
1 fvex 6903 . . . 4 (πΉβ€˜π‘) ∈ V
2 fvex 6903 . . . 4 (πΌβ€˜(πΉβ€˜π‘)) ∈ V
31, 2pm3.2i 469 . . 3 ((πΉβ€˜π‘) ∈ V ∧ (πΌβ€˜(πΉβ€˜π‘)) ∈ V)
4 funsng 6599 . . 3 (((πΉβ€˜π‘) ∈ V ∧ (πΌβ€˜(πΉβ€˜π‘)) ∈ V) β†’ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
53, 4mp1i 13 . 2 (πœ‘ β†’ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
6 trlsegvdeg.iy . . 3 (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
76funeqd 6570 . 2 (πœ‘ β†’ (Fun (iEdgβ€˜π‘Œ) ↔ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩}))
85, 7mpbird 256 1 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463  {csn 4625  βŸ¨cop 4631   class class class wbr 5144   β†Ύ cres 5675   β€œ cima 5676  Fun wfun 6537  β€˜cfv 6543  (class class class)co 7413  0cc0 11133  ...cfz 13511  ..^cfzo 13654  β™―chash 14316  Vtxcvtx 28848  iEdgciedg 28849  Trailsctrls 29543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  trlsegvdeg  30076
  Copyright terms: Public domain W3C validator