MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem3 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem3 29472
Description: Lemma for trlsegvdeg 29477. (Contributed by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtxβ€˜πΊ)
trlsegvdeg.i 𝐼 = (iEdgβ€˜πΊ)
trlsegvdeg.f (πœ‘ β†’ Fun 𝐼)
trlsegvdeg.n (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
trlsegvdeg.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
trlsegvdeg.w (πœ‘ β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
trlsegvdeg.vx (πœ‘ β†’ (Vtxβ€˜π‘‹) = 𝑉)
trlsegvdeg.vy (πœ‘ β†’ (Vtxβ€˜π‘Œ) = 𝑉)
trlsegvdeg.vz (πœ‘ β†’ (Vtxβ€˜π‘) = 𝑉)
trlsegvdeg.ix (πœ‘ β†’ (iEdgβ€˜π‘‹) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
trlsegvdeg.iy (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
trlsegvdeg.iz (πœ‘ β†’ (iEdgβ€˜π‘) = (𝐼 β†Ύ (𝐹 β€œ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem3 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))

Proof of Theorem trlsegvdeglem3
StepHypRef Expression
1 fvex 6904 . . . 4 (πΉβ€˜π‘) ∈ V
2 fvex 6904 . . . 4 (πΌβ€˜(πΉβ€˜π‘)) ∈ V
31, 2pm3.2i 471 . . 3 ((πΉβ€˜π‘) ∈ V ∧ (πΌβ€˜(πΉβ€˜π‘)) ∈ V)
4 funsng 6599 . . 3 (((πΉβ€˜π‘) ∈ V ∧ (πΌβ€˜(πΉβ€˜π‘)) ∈ V) β†’ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
53, 4mp1i 13 . 2 (πœ‘ β†’ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
6 trlsegvdeg.iy . . 3 (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
76funeqd 6570 . 2 (πœ‘ β†’ (Fun (iEdgβ€˜π‘Œ) ↔ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩}))
85, 7mpbird 256 1 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4628  βŸ¨cop 4634   class class class wbr 5148   β†Ύ cres 5678   β€œ cima 5679  Fun wfun 6537  β€˜cfv 6543  (class class class)co 7408  0cc0 11109  ...cfz 13483  ..^cfzo 13626  β™―chash 14289  Vtxcvtx 28253  iEdgciedg 28254  Trailsctrls 28944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  trlsegvdeg  29477
  Copyright terms: Public domain W3C validator