![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeglem3 | Structured version Visualization version GIF version |
Description: Lemma for trlsegvdeg 29477. (Contributed by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | β’ π = (VtxβπΊ) |
trlsegvdeg.i | β’ πΌ = (iEdgβπΊ) |
trlsegvdeg.f | β’ (π β Fun πΌ) |
trlsegvdeg.n | β’ (π β π β (0..^(β―βπΉ))) |
trlsegvdeg.u | β’ (π β π β π) |
trlsegvdeg.w | β’ (π β πΉ(TrailsβπΊ)π) |
trlsegvdeg.vx | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vy | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.vz | β’ (π β (Vtxβπ) = π) |
trlsegvdeg.ix | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0..^π)))) |
trlsegvdeg.iy | β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
trlsegvdeg.iz | β’ (π β (iEdgβπ) = (πΌ βΎ (πΉ β (0...π)))) |
Ref | Expression |
---|---|
trlsegvdeglem3 | β’ (π β Fun (iEdgβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . 4 β’ (πΉβπ) β V | |
2 | fvex 6904 | . . . 4 β’ (πΌβ(πΉβπ)) β V | |
3 | 1, 2 | pm3.2i 471 | . . 3 β’ ((πΉβπ) β V β§ (πΌβ(πΉβπ)) β V) |
4 | funsng 6599 | . . 3 β’ (((πΉβπ) β V β§ (πΌβ(πΉβπ)) β V) β Fun {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) | |
5 | 3, 4 | mp1i 13 | . 2 β’ (π β Fun {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) |
6 | trlsegvdeg.iy | . . 3 β’ (π β (iEdgβπ) = {β¨(πΉβπ), (πΌβ(πΉβπ))β©}) | |
7 | 6 | funeqd 6570 | . 2 β’ (π β (Fun (iEdgβπ) β Fun {β¨(πΉβπ), (πΌβ(πΉβπ))β©})) |
8 | 5, 7 | mpbird 256 | 1 β’ (π β Fun (iEdgβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 β¨cop 4634 class class class wbr 5148 βΎ cres 5678 β cima 5679 Fun wfun 6537 βcfv 6543 (class class class)co 7408 0cc0 11109 ...cfz 13483 ..^cfzo 13626 β―chash 14289 Vtxcvtx 28253 iEdgciedg 28254 Trailsctrls 28944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: trlsegvdeg 29477 |
Copyright terms: Public domain | W3C validator |