MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem3 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem3 30019
Description: Lemma for trlsegvdeg 30024. (Contributed by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtxβ€˜πΊ)
trlsegvdeg.i 𝐼 = (iEdgβ€˜πΊ)
trlsegvdeg.f (πœ‘ β†’ Fun 𝐼)
trlsegvdeg.n (πœ‘ β†’ 𝑁 ∈ (0..^(β™―β€˜πΉ)))
trlsegvdeg.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
trlsegvdeg.w (πœ‘ β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
trlsegvdeg.vx (πœ‘ β†’ (Vtxβ€˜π‘‹) = 𝑉)
trlsegvdeg.vy (πœ‘ β†’ (Vtxβ€˜π‘Œ) = 𝑉)
trlsegvdeg.vz (πœ‘ β†’ (Vtxβ€˜π‘) = 𝑉)
trlsegvdeg.ix (πœ‘ β†’ (iEdgβ€˜π‘‹) = (𝐼 β†Ύ (𝐹 β€œ (0..^𝑁))))
trlsegvdeg.iy (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
trlsegvdeg.iz (πœ‘ β†’ (iEdgβ€˜π‘) = (𝐼 β†Ύ (𝐹 β€œ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem3 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))

Proof of Theorem trlsegvdeglem3
StepHypRef Expression
1 fvex 6904 . . . 4 (πΉβ€˜π‘) ∈ V
2 fvex 6904 . . . 4 (πΌβ€˜(πΉβ€˜π‘)) ∈ V
31, 2pm3.2i 470 . . 3 ((πΉβ€˜π‘) ∈ V ∧ (πΌβ€˜(πΉβ€˜π‘)) ∈ V)
4 funsng 6598 . . 3 (((πΉβ€˜π‘) ∈ V ∧ (πΌβ€˜(πΉβ€˜π‘)) ∈ V) β†’ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
53, 4mp1i 13 . 2 (πœ‘ β†’ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
6 trlsegvdeg.iy . . 3 (πœ‘ β†’ (iEdgβ€˜π‘Œ) = {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩})
76funeqd 6569 . 2 (πœ‘ β†’ (Fun (iEdgβ€˜π‘Œ) ↔ Fun {⟨(πΉβ€˜π‘), (πΌβ€˜(πΉβ€˜π‘))⟩}))
85, 7mpbird 257 1 (πœ‘ β†’ Fun (iEdgβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  Vcvv 3469  {csn 4624  βŸ¨cop 4630   class class class wbr 5142   β†Ύ cres 5674   β€œ cima 5675  Fun wfun 6536  β€˜cfv 6542  (class class class)co 7414  0cc0 11130  ...cfz 13508  ..^cfzo 13651  β™―chash 14313  Vtxcvtx 28796  iEdgciedg 28797  Trailsctrls 29491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-iota 6494  df-fun 6544  df-fv 6550
This theorem is referenced by:  trlsegvdeg  30024
  Copyright terms: Public domain W3C validator