MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeglem3 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem3 30151
Description: Lemma for trlsegvdeg 30156. (Contributed by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem3 (𝜑 → Fun (iEdg‘𝑌))

Proof of Theorem trlsegvdeglem3
StepHypRef Expression
1 fvex 6871 . . . 4 (𝐹𝑁) ∈ V
2 fvex 6871 . . . 4 (𝐼‘(𝐹𝑁)) ∈ V
31, 2pm3.2i 470 . . 3 ((𝐹𝑁) ∈ V ∧ (𝐼‘(𝐹𝑁)) ∈ V)
4 funsng 6567 . . 3 (((𝐹𝑁) ∈ V ∧ (𝐼‘(𝐹𝑁)) ∈ V) → Fun {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
53, 4mp1i 13 . 2 (𝜑 → Fun {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
6 trlsegvdeg.iy . . 3 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
76funeqd 6538 . 2 (𝜑 → (Fun (iEdg‘𝑌) ↔ Fun {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
85, 7mpbird 257 1 (𝜑 → Fun (iEdg‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cop 4595   class class class wbr 5107  cres 5640  cima 5641  Fun wfun 6505  cfv 6511  (class class class)co 7387  0cc0 11068  ...cfz 13468  ..^cfzo 13615  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  Trailsctrls 29618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-iota 6464  df-fun 6513  df-fv 6519
This theorem is referenced by:  trlsegvdeg  30156
  Copyright terms: Public domain W3C validator