MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskin Structured version   Visualization version   GIF version

Theorem tskin 10252
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskin ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskin
StepHypRef Expression
1 inss1 4117 . 2 (𝐴𝐵) ⊆ 𝐴
2 tskss 10251 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ 𝑇)
31, 2mp3an3 1451 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2113  cin 3840  wss 3841  Tarskictsk 10241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-un 3846  df-in 3848  df-ss 3858  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-br 5028  df-tsk 10242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator