![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskin | Structured version Visualization version GIF version |
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskin | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4228 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | tskss 10752 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐴 ∩ 𝐵) ∈ 𝑇) | |
3 | 1, 2 | mp3an3 1450 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∩ cin 3947 ⊆ wss 3948 Tarskictsk 10742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-tsk 10743 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |