Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskin | Structured version Visualization version GIF version |
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskin | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4159 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | tskss 10445 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐴 ∩ 𝐵) ∈ 𝑇) | |
3 | 1, 2 | mp3an3 1448 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 Tarskictsk 10435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-tsk 10436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |