![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskin | Structured version Visualization version GIF version |
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskin | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4258 | . 2 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | tskss 10827 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴) → (𝐴 ∩ 𝐵) ∈ 𝑇) | |
3 | 1, 2 | mp3an3 1450 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → (𝐴 ∩ 𝐵) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 Tarskictsk 10817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-tsk 10818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |