MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskin Structured version   Visualization version   GIF version

Theorem tskin 10782
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskin ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskin
StepHypRef Expression
1 inss1 4219 . 2 (𝐴𝐵) ⊆ 𝐴
2 tskss 10781 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ 𝑇)
31, 2mp3an3 1451 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  cin 3932  wss 3933  Tarskictsk 10771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-tsk 10772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator