MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskin Structured version   Visualization version   GIF version

Theorem tskin 10672
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskin ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskin
StepHypRef Expression
1 inss1 4190 . 2 (𝐴𝐵) ⊆ 𝐴
2 tskss 10671 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ 𝑇)
31, 2mp3an3 1452 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cin 3904  wss 3905  Tarskictsk 10661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-tsk 10662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator