MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskin Structured version   Visualization version   GIF version

Theorem tskin 10753
Description: The intersection of two elements of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskin ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)

Proof of Theorem tskin
StepHypRef Expression
1 inss1 4228 . 2 (𝐴𝐵) ⊆ 𝐴
2 tskss 10752 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇 ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ 𝑇)
31, 2mp3an3 1450 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐴𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  cin 3947  wss 3948  Tarskictsk 10742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-tsk 10743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator