MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskss Structured version   Visualization version   GIF version

Theorem tskss 10445
Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tskss ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴) → 𝐵𝑇)

Proof of Theorem tskss
StepHypRef Expression
1 elpw2g 5263 . . . 4 (𝐴𝑇 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
21adantl 481 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
3 tskpwss 10439 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
43sseld 3916 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵 ∈ 𝒫 𝐴𝐵𝑇))
52, 4sylbird 259 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵𝐴𝐵𝑇))
653impia 1115 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴) → 𝐵𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wcel 2108  wss 3883  𝒫 cpw 4530  Tarskictsk 10435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-tsk 10436
This theorem is referenced by:  tskin  10446  tsksn  10447  tsksuc  10449  tsk0  10450  tskr1om2  10455  tskint  10472
  Copyright terms: Public domain W3C validator