MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskss Structured version   Visualization version   GIF version

Theorem tskss 10755
Description: The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tskss ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴) → 𝐵𝑇)

Proof of Theorem tskss
StepHypRef Expression
1 elpw2g 5337 . . . 4 (𝐴𝑇 → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
21adantl 481 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵 ∈ 𝒫 𝐴𝐵𝐴))
3 tskpwss 10749 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
43sseld 3976 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵 ∈ 𝒫 𝐴𝐵𝑇))
52, 4sylbird 260 . 2 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (𝐵𝐴𝐵𝑇))
653impia 1114 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇𝐵𝐴) → 𝐵𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wcel 2098  wss 3943  𝒫 cpw 4597  Tarskictsk 10745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-tsk 10746
This theorem is referenced by:  tskin  10756  tsksn  10757  tsksuc  10759  tsk0  10760  tskr1om2  10765  tskint  10782
  Copyright terms: Public domain W3C validator