MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvctlm Structured version   Visualization version   GIF version

Theorem tvctlm 24151
Description: A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvctlm (𝑊 ∈ TopVec → 𝑊 ∈ TopMod)

Proof of Theorem tvctlm
StepHypRef Expression
1 eqid 2734 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
21istvc 24146 . 2 (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ (Scalar‘𝑊) ∈ TopDRing))
32simplbi 497 1 (𝑊 ∈ TopVec → 𝑊 ∈ TopMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6541  Scalarcsca 17276  TopDRingctdrg 24111  TopModctlm 24112  TopVecctvc 24113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-tvc 24117
This theorem is referenced by:  tvclmod  24152
  Copyright terms: Public domain W3C validator