MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvctlm Structured version   Visualization version   GIF version

Theorem tvctlm 24112
Description: A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvctlm (𝑊 ∈ TopVec → 𝑊 ∈ TopMod)

Proof of Theorem tvctlm
StepHypRef Expression
1 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
21istvc 24107 . 2 (𝑊 ∈ TopVec ↔ (𝑊 ∈ TopMod ∧ (Scalar‘𝑊) ∈ TopDRing))
32simplbi 497 1 (𝑊 ∈ TopVec → 𝑊 ∈ TopMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6481  Scalarcsca 17164  TopDRingctdrg 24072  TopModctlm 24073  TopVecctvc 24074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-tvc 24078
This theorem is referenced by:  tvclmod  24113
  Copyright terms: Public domain W3C validator