MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvctlm Structured version   Visualization version   GIF version

Theorem tvctlm 23701
Description: A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvctlm (π‘Š ∈ TopVec β†’ π‘Š ∈ TopMod)

Proof of Theorem tvctlm
StepHypRef Expression
1 eqid 2733 . . 3 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
21istvc 23696 . 2 (π‘Š ∈ TopVec ↔ (π‘Š ∈ TopMod ∧ (Scalarβ€˜π‘Š) ∈ TopDRing))
32simplbi 499 1 (π‘Š ∈ TopVec β†’ π‘Š ∈ TopMod)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107  β€˜cfv 6544  Scalarcsca 17200  TopDRingctdrg 23661  TopModctlm 23662  TopVecctvc 23663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-tvc 23667
This theorem is referenced by:  tvclmod  23702
  Copyright terms: Public domain W3C validator