MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tvclmod Structured version   Visualization version   GIF version

Theorem tvclmod 24121
Description: A topological vector space is a left module. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tvclmod (𝑊 ∈ TopVec → 𝑊 ∈ LMod)

Proof of Theorem tvclmod
StepHypRef Expression
1 tvctlm 24120 . 2 (𝑊 ∈ TopVec → 𝑊 ∈ TopMod)
2 tlmlmod 24112 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
31, 2syl 17 1 (𝑊 ∈ TopVec → 𝑊 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  LModclmod 20802  TopModctlm 24081  TopVecctvc 24082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-iota 6480  df-fv 6535  df-ov 7402  df-tlm 24085  df-tvc 24086
This theorem is referenced by:  tvclvec  24122
  Copyright terms: Public domain W3C validator