MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtgp Structured version   Visualization version   GIF version

Theorem tlmtgp 24083
Description: A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtgp (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)

Proof of Theorem tlmtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tlmlmod 24076 . . 3 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
2 lmodgrp 20773 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ Grp)
4 tlmtmd 24074 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
5 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2729 . . . . . . 7 (invg𝑊) = (invg𝑊)
75, 6grpinvf 18918 . . . . . 6 (𝑊 ∈ Grp → (invg𝑊):(Base‘𝑊)⟶(Base‘𝑊))
83, 7syl 17 . . . . 5 (𝑊 ∈ TopMod → (invg𝑊):(Base‘𝑊)⟶(Base‘𝑊))
98feqmptd 6929 . . . 4 (𝑊 ∈ TopMod → (invg𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ ((invg𝑊)‘𝑥)))
10 eqid 2729 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
12 eqid 2729 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
13 eqid 2729 . . . . . . 7 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
145, 6, 10, 11, 12, 13lmodvneg1 20811 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥) = ((invg𝑊)‘𝑥))
151, 14sylan 580 . . . . 5 ((𝑊 ∈ TopMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥) = ((invg𝑊)‘𝑥))
1615mpteq2dva 5200 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)) = (𝑥 ∈ (Base‘𝑊) ↦ ((invg𝑊)‘𝑥)))
179, 16eqtr4d 2767 . . 3 (𝑊 ∈ TopMod → (invg𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)))
18 eqid 2729 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
19 eqid 2729 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
20 id 22 . . . 4 (𝑊 ∈ TopMod → 𝑊 ∈ TopMod)
21 tlmtps 24075 . . . . 5 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 18istps 22821 . . . . 5 (𝑊 ∈ TopSp ↔ (TopOpen‘𝑊) ∈ (TopOn‘(Base‘𝑊)))
2321, 22sylib 218 . . . 4 (𝑊 ∈ TopMod → (TopOpen‘𝑊) ∈ (TopOn‘(Base‘𝑊)))
2410tlmscatps 24078 . . . . . 6 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ TopSp)
25 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2625, 19istps 22821 . . . . . 6 ((Scalar‘𝑊) ∈ TopSp ↔ (TopOpen‘(Scalar‘𝑊)) ∈ (TopOn‘(Base‘(Scalar‘𝑊))))
2724, 26sylib 218 . . . . 5 (𝑊 ∈ TopMod → (TopOpen‘(Scalar‘𝑊)) ∈ (TopOn‘(Base‘(Scalar‘𝑊))))
2810lmodring 20774 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
291, 28syl 17 . . . . . . 7 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ Ring)
30 ringgrp 20147 . . . . . . 7 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
3129, 30syl 17 . . . . . 6 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ Grp)
3225, 12ringidcl 20174 . . . . . . 7 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3329, 32syl 17 . . . . . 6 (𝑊 ∈ TopMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3425, 13grpinvcl 18919 . . . . . 6 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
3531, 33, 34syl2anc 584 . . . . 5 (𝑊 ∈ TopMod → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
3623, 27, 35cnmptc 23549 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘(Scalar‘𝑊))))
3723cnmptid 23548 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
3810, 11, 18, 19, 20, 23, 36, 37cnmpt1vsca 24081 . . 3 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
3917, 38eqeltrd 2828 . 2 (𝑊 ∈ TopMod → (invg𝑊) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
4018, 6istgp 23964 . 2 (𝑊 ∈ TopGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ TopMnd ∧ (invg𝑊) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊))))
413, 4, 39, 40syl3anbrc 1344 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  TopOpenctopn 17384  Grpcgrp 18865  invgcminusg 18866  1rcur 20090  Ringcrg 20142  LModclmod 20766  TopOnctopon 22797  TopSpctps 22819   Cn ccn 23111  TopMndctmd 23957  TopGrpctgp 23958  TopModctlm 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-scaf 20769  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-tmd 23959  df-tgp 23960  df-trg 24047  df-tlm 24049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator