MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtgp Structured version   Visualization version   GIF version

Theorem tlmtgp 24116
Description: A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtgp (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)

Proof of Theorem tlmtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tlmlmod 24109 . . 3 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
2 lmodgrp 20805 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ Grp)
4 tlmtmd 24107 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
5 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2729 . . . . . . 7 (invg𝑊) = (invg𝑊)
75, 6grpinvf 18900 . . . . . 6 (𝑊 ∈ Grp → (invg𝑊):(Base‘𝑊)⟶(Base‘𝑊))
83, 7syl 17 . . . . 5 (𝑊 ∈ TopMod → (invg𝑊):(Base‘𝑊)⟶(Base‘𝑊))
98feqmptd 6911 . . . 4 (𝑊 ∈ TopMod → (invg𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ ((invg𝑊)‘𝑥)))
10 eqid 2729 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
12 eqid 2729 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
13 eqid 2729 . . . . . . 7 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
145, 6, 10, 11, 12, 13lmodvneg1 20843 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥) = ((invg𝑊)‘𝑥))
151, 14sylan 580 . . . . 5 ((𝑊 ∈ TopMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥) = ((invg𝑊)‘𝑥))
1615mpteq2dva 5195 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)) = (𝑥 ∈ (Base‘𝑊) ↦ ((invg𝑊)‘𝑥)))
179, 16eqtr4d 2767 . . 3 (𝑊 ∈ TopMod → (invg𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)))
18 eqid 2729 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
19 eqid 2729 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
20 id 22 . . . 4 (𝑊 ∈ TopMod → 𝑊 ∈ TopMod)
21 tlmtps 24108 . . . . 5 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 18istps 22854 . . . . 5 (𝑊 ∈ TopSp ↔ (TopOpen‘𝑊) ∈ (TopOn‘(Base‘𝑊)))
2321, 22sylib 218 . . . 4 (𝑊 ∈ TopMod → (TopOpen‘𝑊) ∈ (TopOn‘(Base‘𝑊)))
2410tlmscatps 24111 . . . . . 6 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ TopSp)
25 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2625, 19istps 22854 . . . . . 6 ((Scalar‘𝑊) ∈ TopSp ↔ (TopOpen‘(Scalar‘𝑊)) ∈ (TopOn‘(Base‘(Scalar‘𝑊))))
2724, 26sylib 218 . . . . 5 (𝑊 ∈ TopMod → (TopOpen‘(Scalar‘𝑊)) ∈ (TopOn‘(Base‘(Scalar‘𝑊))))
2810lmodring 20806 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
291, 28syl 17 . . . . . . 7 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ Ring)
30 ringgrp 20158 . . . . . . 7 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
3129, 30syl 17 . . . . . 6 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ Grp)
3225, 12ringidcl 20185 . . . . . . 7 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3329, 32syl 17 . . . . . 6 (𝑊 ∈ TopMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3425, 13grpinvcl 18901 . . . . . 6 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
3531, 33, 34syl2anc 584 . . . . 5 (𝑊 ∈ TopMod → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
3623, 27, 35cnmptc 23582 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘(Scalar‘𝑊))))
3723cnmptid 23581 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
3810, 11, 18, 19, 20, 23, 36, 37cnmpt1vsca 24114 . . 3 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
3917, 38eqeltrd 2828 . 2 (𝑊 ∈ TopMod → (invg𝑊) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
4018, 6istgp 23997 . 2 (𝑊 ∈ TopGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ TopMnd ∧ (invg𝑊) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊))))
413, 4, 39, 40syl3anbrc 1344 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  TopOpenctopn 17360  Grpcgrp 18847  invgcminusg 18848  1rcur 20101  Ringcrg 20153  LModclmod 20798  TopOnctopon 22830  TopSpctps 22852   Cn ccn 23144  TopMndctmd 23990  TopGrpctgp 23991  TopModctlm 24078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-topgen 17382  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20800  df-scaf 20801  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-cnp 23148  df-tx 23482  df-tmd 23992  df-tgp 23993  df-trg 24080  df-tlm 24082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator