MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tlmtgp Structured version   Visualization version   GIF version

Theorem tlmtgp 24117
Description: A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
tlmtgp (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)

Proof of Theorem tlmtgp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tlmlmod 24110 . . 3 (𝑊 ∈ TopMod → 𝑊 ∈ LMod)
2 lmodgrp 20806 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ Grp)
4 tlmtmd 24108 . 2 (𝑊 ∈ TopMod → 𝑊 ∈ TopMnd)
5 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
6 eqid 2729 . . . . . . 7 (invg𝑊) = (invg𝑊)
75, 6grpinvf 18901 . . . . . 6 (𝑊 ∈ Grp → (invg𝑊):(Base‘𝑊)⟶(Base‘𝑊))
83, 7syl 17 . . . . 5 (𝑊 ∈ TopMod → (invg𝑊):(Base‘𝑊)⟶(Base‘𝑊))
98feqmptd 6911 . . . 4 (𝑊 ∈ TopMod → (invg𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ ((invg𝑊)‘𝑥)))
10 eqid 2729 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
11 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
12 eqid 2729 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
13 eqid 2729 . . . . . . 7 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
145, 6, 10, 11, 12, 13lmodvneg1 20844 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥) = ((invg𝑊)‘𝑥))
151, 14sylan 580 . . . . 5 ((𝑊 ∈ TopMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥) = ((invg𝑊)‘𝑥))
1615mpteq2dva 5195 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)) = (𝑥 ∈ (Base‘𝑊) ↦ ((invg𝑊)‘𝑥)))
179, 16eqtr4d 2767 . . 3 (𝑊 ∈ TopMod → (invg𝑊) = (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)))
18 eqid 2729 . . . 4 (TopOpen‘𝑊) = (TopOpen‘𝑊)
19 eqid 2729 . . . 4 (TopOpen‘(Scalar‘𝑊)) = (TopOpen‘(Scalar‘𝑊))
20 id 22 . . . 4 (𝑊 ∈ TopMod → 𝑊 ∈ TopMod)
21 tlmtps 24109 . . . . 5 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 18istps 22855 . . . . 5 (𝑊 ∈ TopSp ↔ (TopOpen‘𝑊) ∈ (TopOn‘(Base‘𝑊)))
2321, 22sylib 218 . . . 4 (𝑊 ∈ TopMod → (TopOpen‘𝑊) ∈ (TopOn‘(Base‘𝑊)))
2410tlmscatps 24112 . . . . . 6 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ TopSp)
25 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2625, 19istps 22855 . . . . . 6 ((Scalar‘𝑊) ∈ TopSp ↔ (TopOpen‘(Scalar‘𝑊)) ∈ (TopOn‘(Base‘(Scalar‘𝑊))))
2724, 26sylib 218 . . . . 5 (𝑊 ∈ TopMod → (TopOpen‘(Scalar‘𝑊)) ∈ (TopOn‘(Base‘(Scalar‘𝑊))))
2810lmodring 20807 . . . . . . . 8 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
291, 28syl 17 . . . . . . 7 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ Ring)
30 ringgrp 20159 . . . . . . 7 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
3129, 30syl 17 . . . . . 6 (𝑊 ∈ TopMod → (Scalar‘𝑊) ∈ Grp)
3225, 12ringidcl 20186 . . . . . . 7 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3329, 32syl 17 . . . . . 6 (𝑊 ∈ TopMod → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
3425, 13grpinvcl 18902 . . . . . 6 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
3531, 33, 34syl2anc 584 . . . . 5 (𝑊 ∈ TopMod → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
3623, 27, 35cnmptc 23583 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘(Scalar‘𝑊))))
3723cnmptid 23582 . . . 4 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ 𝑥) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
3810, 11, 18, 19, 20, 23, 36, 37cnmpt1vsca 24115 . . 3 (𝑊 ∈ TopMod → (𝑥 ∈ (Base‘𝑊) ↦ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑥)) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
3917, 38eqeltrd 2828 . 2 (𝑊 ∈ TopMod → (invg𝑊) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊)))
4018, 6istgp 23998 . 2 (𝑊 ∈ TopGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ TopMnd ∧ (invg𝑊) ∈ ((TopOpen‘𝑊) Cn (TopOpen‘𝑊))))
413, 4, 39, 40syl3anbrc 1344 1 (𝑊 ∈ TopMod → 𝑊 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17156  Scalarcsca 17200   ·𝑠 cvsca 17201  TopOpenctopn 17361  Grpcgrp 18848  invgcminusg 18849  1rcur 20102  Ringcrg 20154  LModclmod 20799  TopOnctopon 22831  TopSpctps 22853   Cn ccn 23145  TopMndctmd 23991  TopGrpctgp 23992  TopModctlm 24079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-plusg 17210  df-0g 17381  df-topgen 17383  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-mgp 20062  df-ur 20103  df-ring 20156  df-lmod 20801  df-scaf 20802  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cn 23148  df-cnp 23149  df-tx 23483  df-tmd 23993  df-tgp 23994  df-trg 24081  df-tlm 24083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator