| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unexOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of unex 7746 as of 21-Jul-2025. (Contributed by NM, 1-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| unex.1 | ⊢ 𝐴 ∈ V |
| unex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| unexOLD | ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | unipr 4904 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
| 4 | prex 5417 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 5 | 4 | uniex 7743 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
| 6 | 3, 5 | eqeltrri 2830 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 {cpr 4608 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |