![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of unex 7763 as of 21-Jul-2025. (Contributed by NM, 1-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unex.1 | ⊢ 𝐴 ∈ V |
unex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unexOLD | ⊢ (𝐴 ∪ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | unipr 4929 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
4 | prex 5443 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
5 | 4 | uniex 7760 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
6 | 3, 5 | eqeltrri 2836 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 {cpr 4633 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |