MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexOLD Structured version   Visualization version   GIF version

Theorem unexOLD 7724
Description: Obsolete version of unex 7723 as of 21-Jul-2025. (Contributed by NM, 1-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
unex.1 𝐴 ∈ V
unex.2 𝐵 ∈ V
Assertion
Ref Expression
unexOLD (𝐴𝐵) ∈ V

Proof of Theorem unexOLD
StepHypRef Expression
1 unex.1 . . 3 𝐴 ∈ V
2 unex.2 . . 3 𝐵 ∈ V
31, 2unipr 4891 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 prex 5395 . . 3 {𝐴, 𝐵} ∈ V
54uniex 7720 . 2 {𝐴, 𝐵} ∈ V
63, 5eqeltrri 2826 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  cun 3915  {cpr 4594   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator