MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexOLD Structured version   Visualization version   GIF version

Theorem unexOLD 7747
Description: Obsolete version of unex 7746 as of 21-Jul-2025. (Contributed by NM, 1-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
unex.1 𝐴 ∈ V
unex.2 𝐵 ∈ V
Assertion
Ref Expression
unexOLD (𝐴𝐵) ∈ V

Proof of Theorem unexOLD
StepHypRef Expression
1 unex.1 . . 3 𝐴 ∈ V
2 unex.2 . . 3 𝐵 ∈ V
31, 2unipr 4904 . 2 {𝐴, 𝐵} = (𝐴𝐵)
4 prex 5417 . . 3 {𝐴, 𝐵} ∈ V
54uniex 7743 . 2 {𝐴, 𝐵} ∈ V
63, 5eqeltrri 2830 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463  cun 3929  {cpr 4608   cuni 4887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator