![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unex | Structured version Visualization version GIF version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
Ref | Expression |
---|---|
unex.1 | ⊢ 𝐴 ∈ V |
unex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | unexg 7778 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
Copyright terms: Public domain | W3C validator |