Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unex | Structured version Visualization version GIF version |
Description: The union of two sets is a set. Corollary 5.8 of [TakeutiZaring] p. 16. (Contributed by NM, 1-Jul-1994.) |
Ref | Expression |
---|---|
unex.1 | ⊢ 𝐴 ∈ V |
unex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
unex | ⊢ (𝐴 ∪ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unex.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | unex.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | unipr 4857 | . 2 ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) |
4 | prex 5355 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
5 | 4 | uniex 7594 | . 2 ⊢ ∪ {𝐴, 𝐵} ∈ V |
6 | 3, 5 | eqeltrri 2836 | 1 ⊢ (𝐴 ∪ 𝐵) ∈ V |
Copyright terms: Public domain | W3C validator |