| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4580 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5377 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5376 | . . 3 ⊢ {𝐶} ∈ V | |
| 4 | 2, 3 | unex 7683 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {csn 4575 {cpr 4577 {ctp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 df-tp 4580 df-uni 4859 |
| This theorem is referenced by: fr3nr 7711 en3lp 9511 prdsval 17361 imasval 17417 fnfuc 17857 fucval 17870 setcval 17986 catcval 18009 estrcval 18032 estrreslem1 18045 estrres 18047 fnxpc 18084 xpcval 18085 efmnd 18780 cnfldex 21296 xrsex 21323 psrval 21854 om1val 24958 rlocbas 33241 rlocaddval 33242 rlocmulval 33243 idlsrgval 33475 evl1deg2 33547 signswbase 34588 signswplusg 34589 ldualset 39244 erngset 40919 erngset-rN 40927 dvaset 41124 dvhset 41200 hlhilset 42053 rabren3dioph 42932 mendval 43296 clsk1indlem4 44161 clsk1indlem1 44162 grtrimap 48072 usgrgrtrirex 48074 grlimgrtri 48127 rngcvalALTV 48389 ringcvalALTV 48413 lmod1zrnlvec 48619 mndtcval 49704 |
| Copyright terms: Public domain | W3C validator |