| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4584 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5379 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5378 | . . 3 ⊢ {𝐶} ∈ V | |
| 4 | 2, 3 | unex 7684 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 {csn 4579 {cpr 4581 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-tp 4584 df-uni 4862 |
| This theorem is referenced by: fr3nr 7712 en3lp 9529 prdsval 17377 imasval 17433 fnfuc 17873 fucval 17886 setcval 18002 catcval 18025 estrcval 18048 estrreslem1 18061 estrres 18063 fnxpc 18100 xpcval 18101 efmnd 18762 cnfldex 21282 xrsex 21309 psrval 21840 om1val 24946 rlocbas 33217 rlocaddval 33218 rlocmulval 33219 idlsrgval 33450 evl1deg2 33522 signswbase 34521 signswplusg 34522 ldualset 39103 erngset 40779 erngset-rN 40787 dvaset 40984 dvhset 41060 hlhilset 41913 rabren3dioph 42788 mendval 43152 clsk1indlem4 44017 clsk1indlem1 44018 grtrimap 47933 usgrgrtrirex 47935 grlimgrtri 47988 rngcvalALTV 48250 ringcvalALTV 48274 lmod1zrnlvec 48480 mndtcval 49565 |
| Copyright terms: Public domain | W3C validator |