![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4636 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5443 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5442 | . . 3 ⊢ {𝐶} ∈ V | |
4 | 2, 3 | unex 7763 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 {csn 4631 {cpr 4633 {ctp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-tp 4636 df-uni 4913 |
This theorem is referenced by: fr3nr 7791 en3lp 9652 prdsval 17502 imasval 17558 fnfuc 18000 fucval 18014 setcval 18131 catcval 18154 estrcval 18179 estrreslem1 18192 estrreslem1OLD 18193 estrres 18195 fnxpc 18232 xpcval 18233 efmnd 18896 cnfldex 21385 xrsex 21413 psrval 21953 om1val 25077 rlocbas 33254 rlocaddval 33255 rlocmulval 33256 idlsrgval 33511 evl1deg2 33582 signswbase 34548 signswplusg 34549 ldualset 39107 erngset 40783 erngset-rN 40791 dvaset 40988 dvhset 41064 hlhilset 41917 rabren3dioph 42803 mendval 43168 clsk1indlem4 44034 clsk1indlem1 44035 grtrimap 47851 usgrgrtrirex 47853 grlimgrtri 47899 rngcvalALTV 48109 ringcvalALTV 48133 lmod1zrnlvec 48340 mndtcval 48888 |
Copyright terms: Public domain | W3C validator |