| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4597 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5395 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5394 | . . 3 ⊢ {𝐶} ∈ V | |
| 4 | 2, 3 | unex 7723 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {csn 4592 {cpr 4594 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-tp 4597 df-uni 4875 |
| This theorem is referenced by: fr3nr 7751 en3lp 9574 prdsval 17425 imasval 17481 fnfuc 17917 fucval 17930 setcval 18046 catcval 18069 estrcval 18092 estrreslem1 18105 estrres 18107 fnxpc 18144 xpcval 18145 efmnd 18804 cnfldex 21274 xrsex 21301 psrval 21831 om1val 24937 rlocbas 33225 rlocaddval 33226 rlocmulval 33227 idlsrgval 33481 evl1deg2 33553 signswbase 34552 signswplusg 34553 ldualset 39125 erngset 40801 erngset-rN 40809 dvaset 41006 dvhset 41082 hlhilset 41935 rabren3dioph 42810 mendval 43175 clsk1indlem4 44040 clsk1indlem1 44041 grtrimap 47951 usgrgrtrirex 47953 grlimgrtri 47999 rngcvalALTV 48257 ringcvalALTV 48281 lmod1zrnlvec 48487 mndtcval 49572 |
| Copyright terms: Public domain | W3C validator |