| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4606 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5407 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5406 | . . 3 ⊢ {𝐶} ∈ V | |
| 4 | 2, 3 | unex 7738 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 {cpr 4603 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-tp 4606 df-uni 4884 |
| This theorem is referenced by: fr3nr 7766 en3lp 9628 prdsval 17469 imasval 17525 fnfuc 17961 fucval 17974 setcval 18090 catcval 18113 estrcval 18136 estrreslem1 18149 estrres 18151 fnxpc 18188 xpcval 18189 efmnd 18848 cnfldex 21318 xrsex 21345 psrval 21875 om1val 24981 rlocbas 33262 rlocaddval 33263 rlocmulval 33264 idlsrgval 33518 evl1deg2 33590 signswbase 34586 signswplusg 34587 ldualset 39143 erngset 40819 erngset-rN 40827 dvaset 41024 dvhset 41100 hlhilset 41953 rabren3dioph 42838 mendval 43203 clsk1indlem4 44068 clsk1indlem1 44069 grtrimap 47960 usgrgrtrirex 47962 grlimgrtri 48008 rngcvalALTV 48240 ringcvalALTV 48264 lmod1zrnlvec 48470 mndtcval 49456 |
| Copyright terms: Public domain | W3C validator |