Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4563 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5350 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5349 | . . 3 ⊢ {𝐶} ∈ V | |
4 | 2, 3 | unex 7574 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 df-uni 4837 |
This theorem is referenced by: fr3nr 7600 en3lp 9302 prdsval 17083 imasval 17139 fnfuc 17577 fucval 17591 setcval 17708 catcval 17731 estrcval 17756 estrreslem1 17769 estrreslem1OLD 17770 estrres 17772 fnxpc 17809 xpcval 17810 efmnd 18424 xrsex 20525 psrval 21028 om1val 24099 idlsrgval 31550 signswbase 32433 signswplusg 32434 ldualset 37066 erngset 38741 erngset-rN 38749 dvaset 38946 dvhset 39022 hlhilset 39875 rabren3dioph 40553 mendval 40924 clsk1indlem4 41543 clsk1indlem1 41544 rngcvalALTV 45407 ringcvalALTV 45453 lmod1zrnlvec 45723 mndtcval 46252 |
Copyright terms: Public domain | W3C validator |