![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4653 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5452 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5451 | . . 3 ⊢ {𝐶} ∈ V | |
4 | 2, 3 | unex 7779 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 {csn 4648 {cpr 4650 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-tp 4653 df-uni 4932 |
This theorem is referenced by: fr3nr 7807 en3lp 9683 prdsval 17515 imasval 17571 fnfuc 18013 fucval 18027 setcval 18144 catcval 18167 estrcval 18192 estrreslem1 18205 estrreslem1OLD 18206 estrres 18208 fnxpc 18245 xpcval 18246 efmnd 18905 cnfldex 21390 xrsex 21418 psrval 21958 om1val 25082 rlocbas 33239 rlocaddval 33240 rlocmulval 33241 idlsrgval 33496 evl1deg2 33567 signswbase 34531 signswplusg 34532 ldualset 39081 erngset 40757 erngset-rN 40765 dvaset 40962 dvhset 41038 hlhilset 41891 rabren3dioph 42771 mendval 43140 clsk1indlem4 44006 clsk1indlem1 44007 grtrimap 47797 usgrgrtrirex 47799 grlimgrtri 47820 rngcvalALTV 47988 ringcvalALTV 48012 lmod1zrnlvec 48223 mndtcval 48752 |
Copyright terms: Public domain | W3C validator |