Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4530 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5305 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5304 | . . 3 ⊢ {𝐶} ∈ V | |
4 | 2, 3 | unex 7473 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
5 | 1, 4 | eqeltri 2848 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 ∪ cun 3858 {csn 4525 {cpr 4527 {ctp 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-sn 4526 df-pr 4528 df-tp 4530 df-uni 4802 |
This theorem is referenced by: fr3nr 7499 en3lp 9123 prdsval 16800 imasval 16856 fnfuc 17288 fucval 17301 setcval 17417 catcval 17436 estrcval 17454 estrreslem1 17467 estrres 17469 fnxpc 17506 xpcval 17507 efmnd 18115 xrsex 20195 psrval 20691 om1val 23745 idlsrgval 31182 signswbase 32065 signswplusg 32066 ldualset 36736 erngset 38411 erngset-rN 38419 dvaset 38616 dvhset 38692 hlhilset 39545 rabren3dioph 40174 mendval 40545 clsk1indlem4 41165 clsk1indlem1 41166 rngcvalALTV 45011 ringcvalALTV 45057 lmod1zrnlvec 45327 |
Copyright terms: Public domain | W3C validator |