| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4594 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5392 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5391 | . . 3 ⊢ {𝐶} ∈ V | |
| 4 | 2, 3 | unex 7720 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {csn 4589 {cpr 4591 {ctp 4593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-tp 4594 df-uni 4872 |
| This theorem is referenced by: fr3nr 7748 en3lp 9567 prdsval 17418 imasval 17474 fnfuc 17910 fucval 17923 setcval 18039 catcval 18062 estrcval 18085 estrreslem1 18098 estrres 18100 fnxpc 18137 xpcval 18138 efmnd 18797 cnfldex 21267 xrsex 21294 psrval 21824 om1val 24930 rlocbas 33218 rlocaddval 33219 rlocmulval 33220 idlsrgval 33474 evl1deg2 33546 signswbase 34545 signswplusg 34546 ldualset 39118 erngset 40794 erngset-rN 40802 dvaset 40999 dvhset 41075 hlhilset 41928 rabren3dioph 42803 mendval 43168 clsk1indlem4 44033 clsk1indlem1 44034 grtrimap 47947 usgrgrtrirex 47949 grlimgrtri 47995 rngcvalALTV 48253 ringcvalALTV 48277 lmod1zrnlvec 48483 mndtcval 49568 |
| Copyright terms: Public domain | W3C validator |