| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version | ||
| Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4581 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 2 | prex 5375 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
| 3 | snex 5374 | . . 3 ⊢ {𝐶} ∈ V | |
| 4 | 2, 3 | unex 7677 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 {csn 4576 {cpr 4578 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-tp 4581 df-uni 4860 |
| This theorem is referenced by: fr3nr 7705 en3lp 9504 prdsval 17356 imasval 17412 fnfuc 17852 fucval 17865 setcval 17981 catcval 18004 estrcval 18027 estrreslem1 18040 estrres 18042 fnxpc 18079 xpcval 18080 efmnd 18775 cnfldex 21292 xrsex 21319 psrval 21850 om1val 24955 rlocbas 33229 rlocaddval 33230 rlocmulval 33231 idlsrgval 33463 evl1deg2 33535 signswbase 34562 signswplusg 34563 ldualset 39163 erngset 40838 erngset-rN 40846 dvaset 41043 dvhset 41119 hlhilset 41972 rabren3dioph 42847 mendval 43211 clsk1indlem4 44076 clsk1indlem1 44077 grtrimap 47978 usgrgrtrirex 47980 grlimgrtri 48033 rngcvalALTV 48295 ringcvalALTV 48319 lmod1zrnlvec 48525 mndtcval 49610 |
| Copyright terms: Public domain | W3C validator |