Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpex | Structured version Visualization version GIF version |
Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpex | ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4566 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
2 | prex 5355 | . . 3 ⊢ {𝐴, 𝐵} ∈ V | |
3 | snex 5354 | . . 3 ⊢ {𝐶} ∈ V | |
4 | 2, 3 | unex 7596 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) ∈ V |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ {𝐴, 𝐵, 𝐶} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 {cpr 4563 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-tp 4566 df-uni 4840 |
This theorem is referenced by: fr3nr 7622 en3lp 9372 prdsval 17166 imasval 17222 fnfuc 17661 fucval 17675 setcval 17792 catcval 17815 estrcval 17840 estrreslem1 17853 estrreslem1OLD 17854 estrres 17856 fnxpc 17893 xpcval 17894 efmnd 18509 xrsex 20613 psrval 21118 om1val 24193 idlsrgval 31648 signswbase 32533 signswplusg 32534 ldualset 37139 erngset 38814 erngset-rN 38822 dvaset 39019 dvhset 39095 hlhilset 39948 rabren3dioph 40637 mendval 41008 clsk1indlem4 41654 clsk1indlem1 41655 rngcvalALTV 45519 ringcvalALTV 45565 lmod1zrnlvec 45835 mndtcval 46366 |
Copyright terms: Public domain | W3C validator |