| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0c | Structured version Visualization version GIF version | ||
| Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0b 4884 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
| 2 | dfss3 3919 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
| 3 | velsn 4591 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 4 | 3 | ralbii 3079 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ∅c0 4282 {csn 4575 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 df-sn 4576 df-uni 4859 |
| This theorem is referenced by: fin1a2lem13 10310 fctop 22920 cctop 22922 ssdifidllem 33428 ssmxidllem 33445 |
| Copyright terms: Public domain | W3C validator |