MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0c Structured version   Visualization version   GIF version

Theorem uni0c 4914
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 4913 . 2 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
2 dfss3 3952 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
3 velsn 4622 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43ralbii 3081 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
51, 2, 43bitri 297 1 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  wral 3050  wss 3931  c0 4313  {csn 4606   cuni 4887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-11 2156  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-v 3465  df-dif 3934  df-ss 3948  df-nul 4314  df-sn 4607  df-uni 4888
This theorem is referenced by:  fin1a2lem13  10434  fctop  22958  cctop  22960  ssdifidllem  33419  ssmxidllem  33436
  Copyright terms: Public domain W3C validator