Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uni0c | Structured version Visualization version GIF version |
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0b 4864 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
2 | dfss3 3905 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
3 | velsn 4574 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
4 | 3 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
5 | 1, 2, 4 | 3bitri 296 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-uni 4837 |
This theorem is referenced by: fin1a2lem13 10099 fctop 22062 cctop 22064 ssmxidllem 31543 |
Copyright terms: Public domain | W3C validator |