| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0c | Structured version Visualization version GIF version | ||
| Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0b 4899 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
| 2 | dfss3 3937 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
| 3 | velsn 4607 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 4 | 3 | ralbii 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3916 ∅c0 4298 {csn 4591 ∪ cuni 4873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-dif 3919 df-ss 3933 df-nul 4299 df-sn 4592 df-uni 4874 |
| This theorem is referenced by: fin1a2lem13 10371 fctop 22897 cctop 22899 ssdifidllem 33433 ssmxidllem 33450 |
| Copyright terms: Public domain | W3C validator |