MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0c Structured version   Visualization version   GIF version

Theorem uni0c 4938
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 4937 . 2 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
2 dfss3 3970 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
3 velsn 4644 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43ralbii 3092 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
51, 2, 43bitri 297 1 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  wral 3060  wss 3948  c0 4322  {csn 4628   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-uni 4909
This theorem is referenced by:  fin1a2lem13  10413  fctop  22826  cctop  22828  ssmxidllem  33028
  Copyright terms: Public domain W3C validator