MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0c Structured version   Visualization version   GIF version

Theorem uni0c 4868
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 4867 . 2 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
2 dfss3 3909 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
3 velsn 4577 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43ralbii 3092 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
51, 2, 43bitri 297 1 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  wral 3064  wss 3887  c0 4256  {csn 4561   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-uni 4840
This theorem is referenced by:  fin1a2lem13  10168  fctop  22154  cctop  22156  ssmxidllem  31641
  Copyright terms: Public domain W3C validator