![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0c | Structured version Visualization version GIF version |
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0b 4685 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
2 | dfss3 3816 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
3 | velsn 4413 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
4 | 3 | ralbii 3189 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
5 | 1, 2, 4 | 3bitri 289 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1658 ∈ wcel 2166 ∀wral 3117 ⊆ wss 3798 ∅c0 4144 {csn 4397 ∪ cuni 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 df-nul 4145 df-sn 4398 df-uni 4659 |
This theorem is referenced by: fin1a2lem13 9549 fctop 21179 cctop 21181 |
Copyright terms: Public domain | W3C validator |