| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uni0c | Structured version Visualization version GIF version | ||
| Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uni0b 4913 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
| 2 | dfss3 3952 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
| 3 | velsn 4622 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
| 4 | 3 | ralbii 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| 5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 ∅c0 4313 {csn 4606 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-11 2156 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-v 3465 df-dif 3934 df-ss 3948 df-nul 4314 df-sn 4607 df-uni 4888 |
| This theorem is referenced by: fin1a2lem13 10434 fctop 22958 cctop 22960 ssdifidllem 33419 ssmxidllem 33436 |
| Copyright terms: Public domain | W3C validator |