![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uni0c | Structured version Visualization version GIF version |
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
uni0c | ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uni0b 4957 | . 2 ⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | |
2 | dfss3 3997 | . 2 ⊢ (𝐴 ⊆ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {∅}) | |
3 | velsn 4664 | . . 3 ⊢ (𝑥 ∈ {∅} ↔ 𝑥 = ∅) | |
4 | 3 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ {∅} ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
5 | 1, 2, 4 | 3bitri 297 | 1 ⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-sn 4649 df-uni 4932 |
This theorem is referenced by: fin1a2lem13 10483 fctop 23034 cctop 23036 ssdifidllem 33451 ssmxidllem 33468 |
Copyright terms: Public domain | W3C validator |