MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uni0c Structured version   Visualization version   GIF version

Theorem uni0c 4879
Description: The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
uni0c ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uni0c
StepHypRef Expression
1 uni0b 4878 . 2 ( 𝐴 = ∅ ↔ 𝐴 ⊆ {∅})
2 dfss3 3918 . 2 (𝐴 ⊆ {∅} ↔ ∀𝑥𝐴 𝑥 ∈ {∅})
3 velsn 4586 . . 3 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43ralbii 3092 . 2 (∀𝑥𝐴 𝑥 ∈ {∅} ↔ ∀𝑥𝐴 𝑥 = ∅)
51, 2, 43bitri 296 1 ( 𝐴 = ∅ ↔ ∀𝑥𝐴 𝑥 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  wral 3061  wss 3896  c0 4266  {csn 4570   cuni 4849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-v 3442  df-dif 3899  df-in 3903  df-ss 3913  df-nul 4267  df-sn 4571  df-uni 4850
This theorem is referenced by:  fin1a2lem13  10247  fctop  22234  cctop  22236  ssmxidllem  31776
  Copyright terms: Public domain W3C validator