MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem13 Structured version   Visualization version   GIF version

Theorem fin1a2lem13 10099
Description: Lemma for fin1a2 10102. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem13 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) → ¬ (𝐵𝐶) ∈ FinII)

Proof of Theorem fin1a2lem13
Dummy variables 𝑒 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → (𝐵𝐶) ∈ FinII)
2 simpll1 1210 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → 𝐴 ⊆ 𝒫 𝐵)
3 ssel2 3912 . . . . . . . . . 10 ((𝐴 ⊆ 𝒫 𝐵𝑔𝐴) → 𝑔 ∈ 𝒫 𝐵)
43elpwid 4541 . . . . . . . . 9 ((𝐴 ⊆ 𝒫 𝐵𝑔𝐴) → 𝑔𝐵)
54ssdifd 4071 . . . . . . . 8 ((𝐴 ⊆ 𝒫 𝐵𝑔𝐴) → (𝑔𝐶) ⊆ (𝐵𝐶))
6 sseq1 3942 . . . . . . . 8 (𝑓 = (𝑔𝐶) → (𝑓 ⊆ (𝐵𝐶) ↔ (𝑔𝐶) ⊆ (𝐵𝐶)))
75, 6syl5ibrcom 246 . . . . . . 7 ((𝐴 ⊆ 𝒫 𝐵𝑔𝐴) → (𝑓 = (𝑔𝐶) → 𝑓 ⊆ (𝐵𝐶)))
87rexlimdva 3212 . . . . . 6 (𝐴 ⊆ 𝒫 𝐵 → (∃𝑔𝐴 𝑓 = (𝑔𝐶) → 𝑓 ⊆ (𝐵𝐶)))
9 eqid 2738 . . . . . . . 8 (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑔𝐴 ↦ (𝑔𝐶))
109elrnmpt 5854 . . . . . . 7 (𝑓 ∈ V → (𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 𝑓 = (𝑔𝐶)))
1110elv 3428 . . . . . 6 (𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 𝑓 = (𝑔𝐶))
12 velpw 4535 . . . . . 6 (𝑓 ∈ 𝒫 (𝐵𝐶) ↔ 𝑓 ⊆ (𝐵𝐶))
138, 11, 123imtr4g 295 . . . . 5 (𝐴 ⊆ 𝒫 𝐵 → (𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → 𝑓 ∈ 𝒫 (𝐵𝐶)))
1413ssrdv 3923 . . . 4 (𝐴 ⊆ 𝒫 𝐵 → ran (𝑔𝐴 ↦ (𝑔𝐶)) ⊆ 𝒫 (𝐵𝐶))
152, 14syl 17 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → ran (𝑔𝐴 ↦ (𝑔𝐶)) ⊆ 𝒫 (𝐵𝐶))
16 simplrr 774 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → 𝐶𝐴)
17 difid 4301 . . . . . . 7 (𝐶𝐶) = ∅
1817eqcomi 2747 . . . . . 6 ∅ = (𝐶𝐶)
19 difeq1 4046 . . . . . . 7 (𝑔 = 𝐶 → (𝑔𝐶) = (𝐶𝐶))
2019rspceeqv 3567 . . . . . 6 ((𝐶𝐴 ∧ ∅ = (𝐶𝐶)) → ∃𝑔𝐴 ∅ = (𝑔𝐶))
2118, 20mpan2 687 . . . . 5 (𝐶𝐴 → ∃𝑔𝐴 ∅ = (𝑔𝐶))
22 0ex 5226 . . . . . 6 ∅ ∈ V
239elrnmpt 5854 . . . . . 6 (∅ ∈ V → (∅ ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 ∅ = (𝑔𝐶)))
2422, 23ax-mp 5 . . . . 5 (∅ ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 ∅ = (𝑔𝐶))
2521, 24sylibr 233 . . . 4 (𝐶𝐴 → ∅ ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
26 ne0i 4265 . . . 4 (∅ ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → ran (𝑔𝐴 ↦ (𝑔𝐶)) ≠ ∅)
2716, 25, 263syl 18 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → ran (𝑔𝐴 ↦ (𝑔𝐶)) ≠ ∅)
28 simpll2 1211 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → [] Or 𝐴)
299elrnmpt 5854 . . . . . . . 8 (𝑥 ∈ V → (𝑥 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 𝑥 = (𝑔𝐶)))
3029elv 3428 . . . . . . 7 (𝑥 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 𝑥 = (𝑔𝐶))
31 difeq1 4046 . . . . . . . . . 10 (𝑔 = 𝑒 → (𝑔𝐶) = (𝑒𝐶))
3231eqeq2d 2749 . . . . . . . . 9 (𝑔 = 𝑒 → (𝑥 = (𝑔𝐶) ↔ 𝑥 = (𝑒𝐶)))
3332cbvrexvw 3373 . . . . . . . 8 (∃𝑔𝐴 𝑥 = (𝑔𝐶) ↔ ∃𝑒𝐴 𝑥 = (𝑒𝐶))
34 sorpssi 7560 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑒𝐴𝑔𝐴)) → (𝑒𝑔𝑔𝑒))
35 ssdif 4070 . . . . . . . . . . . . . . . . 17 (𝑒𝑔 → (𝑒𝐶) ⊆ (𝑔𝐶))
36 ssdif 4070 . . . . . . . . . . . . . . . . 17 (𝑔𝑒 → (𝑔𝐶) ⊆ (𝑒𝐶))
3735, 36orim12i 905 . . . . . . . . . . . . . . . 16 ((𝑒𝑔𝑔𝑒) → ((𝑒𝐶) ⊆ (𝑔𝐶) ∨ (𝑔𝐶) ⊆ (𝑒𝐶)))
3834, 37syl 17 . . . . . . . . . . . . . . 15 (( [] Or 𝐴 ∧ (𝑒𝐴𝑔𝐴)) → ((𝑒𝐶) ⊆ (𝑔𝐶) ∨ (𝑔𝐶) ⊆ (𝑒𝐶)))
39 sseq2 3943 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔𝐶) → ((𝑒𝐶) ⊆ 𝑓 ↔ (𝑒𝐶) ⊆ (𝑔𝐶)))
40 sseq1 3942 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔𝐶) → (𝑓 ⊆ (𝑒𝐶) ↔ (𝑔𝐶) ⊆ (𝑒𝐶)))
4139, 40orbi12d 915 . . . . . . . . . . . . . . 15 (𝑓 = (𝑔𝐶) → (((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶)) ↔ ((𝑒𝐶) ⊆ (𝑔𝐶) ∨ (𝑔𝐶) ⊆ (𝑒𝐶))))
4238, 41syl5ibrcom 246 . . . . . . . . . . . . . 14 (( [] Or 𝐴 ∧ (𝑒𝐴𝑔𝐴)) → (𝑓 = (𝑔𝐶) → ((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶))))
4342expr 456 . . . . . . . . . . . . 13 (( [] Or 𝐴𝑒𝐴) → (𝑔𝐴 → (𝑓 = (𝑔𝐶) → ((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶)))))
4443rexlimdv 3211 . . . . . . . . . . . 12 (( [] Or 𝐴𝑒𝐴) → (∃𝑔𝐴 𝑓 = (𝑔𝐶) → ((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶))))
4511, 44syl5bi 241 . . . . . . . . . . 11 (( [] Or 𝐴𝑒𝐴) → (𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → ((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶))))
4645ralrimiv 3106 . . . . . . . . . 10 (( [] Or 𝐴𝑒𝐴) → ∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶)))
47 sseq1 3942 . . . . . . . . . . . 12 (𝑥 = (𝑒𝐶) → (𝑥𝑓 ↔ (𝑒𝐶) ⊆ 𝑓))
48 sseq2 3943 . . . . . . . . . . . 12 (𝑥 = (𝑒𝐶) → (𝑓𝑥𝑓 ⊆ (𝑒𝐶)))
4947, 48orbi12d 915 . . . . . . . . . . 11 (𝑥 = (𝑒𝐶) → ((𝑥𝑓𝑓𝑥) ↔ ((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶))))
5049ralbidv 3120 . . . . . . . . . 10 (𝑥 = (𝑒𝐶) → (∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥) ↔ ∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))((𝑒𝐶) ⊆ 𝑓𝑓 ⊆ (𝑒𝐶))))
5146, 50syl5ibrcom 246 . . . . . . . . 9 (( [] Or 𝐴𝑒𝐴) → (𝑥 = (𝑒𝐶) → ∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥)))
5251rexlimdva 3212 . . . . . . . 8 ( [] Or 𝐴 → (∃𝑒𝐴 𝑥 = (𝑒𝐶) → ∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥)))
5333, 52syl5bi 241 . . . . . . 7 ( [] Or 𝐴 → (∃𝑔𝐴 𝑥 = (𝑔𝐶) → ∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥)))
5430, 53syl5bi 241 . . . . . 6 ( [] Or 𝐴 → (𝑥 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → ∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥)))
5554ralrimiv 3106 . . . . 5 ( [] Or 𝐴 → ∀𝑥 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥))
56 sorpss 7559 . . . . 5 ( [] Or ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∀𝑥 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))∀𝑓 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))(𝑥𝑓𝑓𝑥))
5755, 56sylibr 233 . . . 4 ( [] Or 𝐴 → [] Or ran (𝑔𝐴 ↦ (𝑔𝐶)))
5828, 57syl 17 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → [] Or ran (𝑔𝐴 ↦ (𝑔𝐶)))
59 fin2i 9982 . . 3 ((((𝐵𝐶) ∈ FinII ∧ ran (𝑔𝐴 ↦ (𝑔𝐶)) ⊆ 𝒫 (𝐵𝐶)) ∧ (ran (𝑔𝐴 ↦ (𝑔𝐶)) ≠ ∅ ∧ [] Or ran (𝑔𝐴 ↦ (𝑔𝐶)))) → ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
601, 15, 27, 58, 59syl22anc 835 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
61 simpll3 1212 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → ¬ 𝐴𝐴)
62 difeq1 4046 . . . . . . 7 (𝑔 = 𝑓 → (𝑔𝐶) = (𝑓𝐶))
6362cbvmptv 5183 . . . . . 6 (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐴 ↦ (𝑓𝐶))
6463elrnmpt 5854 . . . . 5 ( ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → ( ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)))
6564ibi 266 . . . 4 ( ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → ∃𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))
66 eqid 2738 . . . . . . . . . . . . . . . 16 (𝐶) = (𝐶)
67 difeq1 4046 . . . . . . . . . . . . . . . . 17 (𝑔 = → (𝑔𝐶) = (𝐶))
6867rspceeqv 3567 . . . . . . . . . . . . . . . 16 ((𝐴 ∧ (𝐶) = (𝐶)) → ∃𝑔𝐴 (𝐶) = (𝑔𝐶))
6966, 68mpan2 687 . . . . . . . . . . . . . . 15 (𝐴 → ∃𝑔𝐴 (𝐶) = (𝑔𝐶))
7069adantl 481 . . . . . . . . . . . . . 14 (((𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝐴) → ∃𝑔𝐴 (𝐶) = (𝑔𝐶))
71 vex 3426 . . . . . . . . . . . . . . 15 ∈ V
72 difexg 5246 . . . . . . . . . . . . . . 15 ( ∈ V → (𝐶) ∈ V)
739elrnmpt 5854 . . . . . . . . . . . . . . 15 ((𝐶) ∈ V → ((𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 (𝐶) = (𝑔𝐶)))
7471, 72, 73mp2b 10 . . . . . . . . . . . . . 14 ((𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 (𝐶) = (𝑔𝐶))
7570, 74sylibr 233 . . . . . . . . . . . . 13 (((𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝐴) → (𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
76 elssuni 4868 . . . . . . . . . . . . 13 ((𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → (𝐶) ⊆ ran (𝑔𝐴 ↦ (𝑔𝐶)))
7775, 76syl 17 . . . . . . . . . . . 12 (((𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝐴) → (𝐶) ⊆ ran (𝑔𝐴 ↦ (𝑔𝐶)))
78 simplr 765 . . . . . . . . . . . 12 (((𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝐴) → ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))
7977, 78sseqtrd 3957 . . . . . . . . . . 11 (((𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝐴) → (𝐶) ⊆ (𝑓𝐶))
8079adantll 710 . . . . . . . . . 10 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → (𝐶) ⊆ (𝑓𝐶))
81 unss2 4111 . . . . . . . . . . 11 ((𝐶) ⊆ (𝑓𝐶) → (𝐶 ∪ (𝐶)) ⊆ (𝐶 ∪ (𝑓𝐶)))
82 uncom 4083 . . . . . . . . . . . . . . 15 (𝐶 ∪ (𝐶)) = ((𝐶) ∪ 𝐶)
83 undif1 4406 . . . . . . . . . . . . . . 15 ((𝐶) ∪ 𝐶) = (𝐶)
8482, 83eqtri 2766 . . . . . . . . . . . . . 14 (𝐶 ∪ (𝐶)) = (𝐶)
8584a1i 11 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → (𝐶 ∪ (𝐶)) = (𝐶))
8661ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → ¬ 𝐴𝐴)
8716ad2antrr 722 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → 𝐶𝐴)
88 simplrr 774 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))
89 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑥𝐶) → (𝑒 = ∅ ↔ (𝑥𝐶) = ∅))
90 simpllr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))
91 ssdif0 4294 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓𝐶 ↔ (𝑓𝐶) = ∅)
9291biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑓𝐶 → (𝑓𝐶) = ∅)
9392ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → (𝑓𝐶) = ∅)
9490, 93eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → ran (𝑔𝐴 ↦ (𝑔𝐶)) = ∅)
95 uni0c 4865 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ran (𝑔𝐴 ↦ (𝑔𝐶)) = ∅ ↔ ∀𝑒 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))𝑒 = ∅)
9694, 95sylib 217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → ∀𝑒 ∈ ran (𝑔𝐴 ↦ (𝑔𝐶))𝑒 = ∅)
97 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥𝐶) = (𝑥𝐶)
98 difeq1 4046 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔 = 𝑥 → (𝑔𝐶) = (𝑥𝐶))
9998rspceeqv 3567 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 ∧ (𝑥𝐶) = (𝑥𝐶)) → ∃𝑔𝐴 (𝑥𝐶) = (𝑔𝐶))
10097, 99mpan2 687 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥𝐴 → ∃𝑔𝐴 (𝑥𝐶) = (𝑔𝐶))
101 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥 ∈ V
102 difexg 5246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ V → (𝑥𝐶) ∈ V)
1039elrnmpt 5854 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐶) ∈ V → ((𝑥𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 (𝑥𝐶) = (𝑔𝐶)))
104101, 102, 103mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) ↔ ∃𝑔𝐴 (𝑥𝐶) = (𝑔𝐶))
105100, 104sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴 → (𝑥𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
106105adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → (𝑥𝐶) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
10789, 96, 106rspcdva 3554 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → (𝑥𝐶) = ∅)
108 ssdif0 4294 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝐶 ↔ (𝑥𝐶) = ∅)
109107, 108sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) ∧ 𝑥𝐴) → 𝑥𝐶)
110109ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) → ∀𝑥𝐴 𝑥𝐶)
111 unissb 4870 . . . . . . . . . . . . . . . . . . . . 21 ( 𝐴𝐶 ↔ ∀𝑥𝐴 𝑥𝐶)
112110, 111sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) → 𝐴𝐶)
113 elssuni 4868 . . . . . . . . . . . . . . . . . . . . 21 (𝐶𝐴𝐶 𝐴)
114113ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) → 𝐶 𝐴)
115112, 114eqssd 3934 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) → 𝐴 = 𝐶)
116 simpll 763 . . . . . . . . . . . . . . . . . . 19 (((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) → 𝐶𝐴)
117115, 116eqeltrd 2839 . . . . . . . . . . . . . . . . . 18 (((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) ∧ 𝑓𝐶) → 𝐴𝐴)
118117ex 412 . . . . . . . . . . . . . . . . 17 ((𝐶𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶)) → (𝑓𝐶 𝐴𝐴))
11987, 88, 118syl2anc 583 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → (𝑓𝐶 𝐴𝐴))
12086, 119mtod 197 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → ¬ 𝑓𝐶)
12128ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → [] Or 𝐴)
122 simplrl 773 . . . . . . . . . . . . . . . 16 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → 𝑓𝐴)
123 sorpssi 7560 . . . . . . . . . . . . . . . 16 (( [] Or 𝐴 ∧ (𝑓𝐴𝐶𝐴)) → (𝑓𝐶𝐶𝑓))
124121, 122, 87, 123syl12anc 833 . . . . . . . . . . . . . . 15 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → (𝑓𝐶𝐶𝑓))
125 orel1 885 . . . . . . . . . . . . . . 15 𝑓𝐶 → ((𝑓𝐶𝐶𝑓) → 𝐶𝑓))
126120, 124, 125sylc 65 . . . . . . . . . . . . . 14 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → 𝐶𝑓)
127 undif 4412 . . . . . . . . . . . . . 14 (𝐶𝑓 ↔ (𝐶 ∪ (𝑓𝐶)) = 𝑓)
128126, 127sylib 217 . . . . . . . . . . . . 13 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → (𝐶 ∪ (𝑓𝐶)) = 𝑓)
12985, 128sseq12d 3950 . . . . . . . . . . . 12 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → ((𝐶 ∪ (𝐶)) ⊆ (𝐶 ∪ (𝑓𝐶)) ↔ (𝐶) ⊆ 𝑓))
130 ssun1 4102 . . . . . . . . . . . . 13 ⊆ (𝐶)
131 sstr 3925 . . . . . . . . . . . . 13 (( ⊆ (𝐶) ∧ (𝐶) ⊆ 𝑓) → 𝑓)
132130, 131mpan 686 . . . . . . . . . . . 12 ((𝐶) ⊆ 𝑓𝑓)
133129, 132syl6bi 252 . . . . . . . . . . 11 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → ((𝐶 ∪ (𝐶)) ⊆ (𝐶 ∪ (𝑓𝐶)) → 𝑓))
13481, 133syl5 34 . . . . . . . . . 10 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → ((𝐶) ⊆ (𝑓𝐶) → 𝑓))
13580, 134mpd 15 . . . . . . . . 9 ((((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) ∧ 𝐴) → 𝑓)
136135ralrimiva 3107 . . . . . . . 8 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) → ∀𝐴 𝑓)
137 unissb 4870 . . . . . . . 8 ( 𝐴𝑓 ↔ ∀𝐴 𝑓)
138136, 137sylibr 233 . . . . . . 7 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) → 𝐴𝑓)
139 elssuni 4868 . . . . . . . 8 (𝑓𝐴𝑓 𝐴)
140139ad2antrl 724 . . . . . . 7 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) → 𝑓 𝐴)
141138, 140eqssd 3934 . . . . . 6 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) → 𝐴 = 𝑓)
142 simprl 767 . . . . . 6 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) → 𝑓𝐴)
143141, 142eqeltrd 2839 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) ∧ (𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶))) → 𝐴𝐴)
144143rexlimdvaa 3213 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → (∃𝑓𝐴 ran (𝑔𝐴 ↦ (𝑔𝐶)) = (𝑓𝐶) → 𝐴𝐴))
14565, 144syl5 34 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → ( ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)) → 𝐴𝐴))
14661, 145mtod 197 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) ∧ (𝐵𝐶) ∈ FinII) → ¬ ran (𝑔𝐴 ↦ (𝑔𝐶)) ∈ ran (𝑔𝐴 ↦ (𝑔𝐶)))
14760, 146pm2.65da 813 1 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶𝐴)) → ¬ (𝐵𝐶) ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836  cmpt 5153   Or wor 5493  ran crn 5581   [] crpss 7553  Fincfn 8691  FinIIcfin2 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-rpss 7554  df-fin2 9973
This theorem is referenced by:  fin1a2s  10101
  Copyright terms: Public domain W3C validator