| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpr 484 | . . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → (𝐵 ∖ 𝐶) ∈ FinII) | 
| 2 |  | simpll1 1213 | . . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → 𝐴 ⊆ 𝒫 𝐵) | 
| 3 |  | ssel2 3978 | . . . . . . . . . 10
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ 𝒫 𝐵) | 
| 4 | 3 | elpwid 4609 | . . . . . . . . 9
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → 𝑔 ⊆ 𝐵) | 
| 5 | 4 | ssdifd 4145 | . . . . . . . 8
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → (𝑔 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | 
| 6 |  | sseq1 4009 | . . . . . . . 8
⊢ (𝑓 = (𝑔 ∖ 𝐶) → (𝑓 ⊆ (𝐵 ∖ 𝐶) ↔ (𝑔 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶))) | 
| 7 | 5, 6 | syl5ibrcom 247 | . . . . . . 7
⊢ ((𝐴 ⊆ 𝒫 𝐵 ∧ 𝑔 ∈ 𝐴) → (𝑓 = (𝑔 ∖ 𝐶) → 𝑓 ⊆ (𝐵 ∖ 𝐶))) | 
| 8 | 7 | rexlimdva 3155 | . . . . . 6
⊢ (𝐴 ⊆ 𝒫 𝐵 → (∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶) → 𝑓 ⊆ (𝐵 ∖ 𝐶))) | 
| 9 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) | 
| 10 | 9 | elrnmpt 5969 | . . . . . . 7
⊢ (𝑓 ∈ V → (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶))) | 
| 11 | 10 | elv 3485 | . . . . . 6
⊢ (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶)) | 
| 12 |  | velpw 4605 | . . . . . 6
⊢ (𝑓 ∈ 𝒫 (𝐵 ∖ 𝐶) ↔ 𝑓 ⊆ (𝐵 ∖ 𝐶)) | 
| 13 | 8, 11, 12 | 3imtr4g 296 | . . . . 5
⊢ (𝐴 ⊆ 𝒫 𝐵 → (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → 𝑓 ∈ 𝒫 (𝐵 ∖ 𝐶))) | 
| 14 | 13 | ssrdv 3989 | . . . 4
⊢ (𝐴 ⊆ 𝒫 𝐵 → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ⊆ 𝒫 (𝐵 ∖ 𝐶)) | 
| 15 | 2, 14 | syl 17 | . . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ⊆ 𝒫 (𝐵 ∖ 𝐶)) | 
| 16 |  | simplrr 778 | . . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → 𝐶 ∈ 𝐴) | 
| 17 |  | difid 4376 | . . . . . . 7
⊢ (𝐶 ∖ 𝐶) = ∅ | 
| 18 | 17 | eqcomi 2746 | . . . . . 6
⊢ ∅ =
(𝐶 ∖ 𝐶) | 
| 19 |  | difeq1 4119 | . . . . . . 7
⊢ (𝑔 = 𝐶 → (𝑔 ∖ 𝐶) = (𝐶 ∖ 𝐶)) | 
| 20 | 19 | rspceeqv 3645 | . . . . . 6
⊢ ((𝐶 ∈ 𝐴 ∧ ∅ = (𝐶 ∖ 𝐶)) → ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶)) | 
| 21 | 18, 20 | mpan2 691 | . . . . 5
⊢ (𝐶 ∈ 𝐴 → ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶)) | 
| 22 |  | 0ex 5307 | . . . . . 6
⊢ ∅
∈ V | 
| 23 | 9 | elrnmpt 5969 | . . . . . 6
⊢ (∅
∈ V → (∅ ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶))) | 
| 24 | 22, 23 | ax-mp 5 | . . . . 5
⊢ (∅
∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 ∅ = (𝑔 ∖ 𝐶)) | 
| 25 | 21, 24 | sylibr 234 | . . . 4
⊢ (𝐶 ∈ 𝐴 → ∅ ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 26 |  | ne0i 4341 | . . . 4
⊢ (∅
∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ≠ ∅) | 
| 27 | 16, 25, 26 | 3syl 18 | . . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ≠ ∅) | 
| 28 |  | simpll2 1214 | . . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) →
[⊊] Or 𝐴) | 
| 29 | 9 | elrnmpt 5969 | . . . . . . . 8
⊢ (𝑥 ∈ V → (𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑥 = (𝑔 ∖ 𝐶))) | 
| 30 | 29 | elv 3485 | . . . . . . 7
⊢ (𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 𝑥 = (𝑔 ∖ 𝐶)) | 
| 31 |  | difeq1 4119 | . . . . . . . . . 10
⊢ (𝑔 = 𝑒 → (𝑔 ∖ 𝐶) = (𝑒 ∖ 𝐶)) | 
| 32 | 31 | eqeq2d 2748 | . . . . . . . . 9
⊢ (𝑔 = 𝑒 → (𝑥 = (𝑔 ∖ 𝐶) ↔ 𝑥 = (𝑒 ∖ 𝐶))) | 
| 33 | 32 | cbvrexvw 3238 | . . . . . . . 8
⊢
(∃𝑔 ∈
𝐴 𝑥 = (𝑔 ∖ 𝐶) ↔ ∃𝑒 ∈ 𝐴 𝑥 = (𝑒 ∖ 𝐶)) | 
| 34 |  | sorpssi 7749 | . . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴)) → (𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒)) | 
| 35 |  | ssdif 4144 | . . . . . . . . . . . . . . . . 17
⊢ (𝑒 ⊆ 𝑔 → (𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶)) | 
| 36 |  | ssdif 4144 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 ⊆ 𝑒 → (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶)) | 
| 37 | 35, 36 | orim12i 909 | . . . . . . . . . . . . . . . 16
⊢ ((𝑒 ⊆ 𝑔 ∨ 𝑔 ⊆ 𝑒) → ((𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶) ∨ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶))) | 
| 38 | 34, 37 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((
[⊊] Or 𝐴
∧ (𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴)) → ((𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶) ∨ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶))) | 
| 39 |  | sseq2 4010 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ↔ (𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶))) | 
| 40 |  | sseq1 4009 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑔 ∖ 𝐶) → (𝑓 ⊆ (𝑒 ∖ 𝐶) ↔ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶))) | 
| 41 | 39, 40 | orbi12d 919 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑔 ∖ 𝐶) → (((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)) ↔ ((𝑒 ∖ 𝐶) ⊆ (𝑔 ∖ 𝐶) ∨ (𝑔 ∖ 𝐶) ⊆ (𝑒 ∖ 𝐶)))) | 
| 42 | 38, 41 | syl5ibrcom 247 | . . . . . . . . . . . . . 14
⊢ ((
[⊊] Or 𝐴
∧ (𝑒 ∈ 𝐴 ∧ 𝑔 ∈ 𝐴)) → (𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) | 
| 43 | 42 | expr 456 | . . . . . . . . . . . . 13
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (𝑔 ∈ 𝐴 → (𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶))))) | 
| 44 | 43 | rexlimdv 3153 | . . . . . . . . . . . 12
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (∃𝑔 ∈ 𝐴 𝑓 = (𝑔 ∖ 𝐶) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) | 
| 45 | 11, 44 | biimtrid 242 | . . . . . . . . . . 11
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) | 
| 46 | 45 | ralrimiv 3145 | . . . . . . . . . 10
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶))) | 
| 47 |  | sseq1 4009 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑒 ∖ 𝐶) → (𝑥 ⊆ 𝑓 ↔ (𝑒 ∖ 𝐶) ⊆ 𝑓)) | 
| 48 |  | sseq2 4010 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑒 ∖ 𝐶) → (𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ (𝑒 ∖ 𝐶))) | 
| 49 | 47, 48 | orbi12d 919 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑒 ∖ 𝐶) → ((𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥) ↔ ((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) | 
| 50 | 49 | ralbidv 3178 | . . . . . . . . . 10
⊢ (𝑥 = (𝑒 ∖ 𝐶) → (∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥) ↔ ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))((𝑒 ∖ 𝐶) ⊆ 𝑓 ∨ 𝑓 ⊆ (𝑒 ∖ 𝐶)))) | 
| 51 | 46, 50 | syl5ibrcom 247 | . . . . . . . . 9
⊢ ((
[⊊] Or 𝐴
∧ 𝑒 ∈ 𝐴) → (𝑥 = (𝑒 ∖ 𝐶) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) | 
| 52 | 51 | rexlimdva 3155 | . . . . . . . 8
⊢ (
[⊊] Or 𝐴
→ (∃𝑒 ∈
𝐴 𝑥 = (𝑒 ∖ 𝐶) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) | 
| 53 | 33, 52 | biimtrid 242 | . . . . . . 7
⊢ (
[⊊] Or 𝐴
→ (∃𝑔 ∈
𝐴 𝑥 = (𝑔 ∖ 𝐶) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) | 
| 54 | 30, 53 | biimtrid 242 | . . . . . 6
⊢ (
[⊊] Or 𝐴
→ (𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥))) | 
| 55 | 54 | ralrimiv 3145 | . . . . 5
⊢ (
[⊊] Or 𝐴
→ ∀𝑥 ∈ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥)) | 
| 56 |  | sorpss 7748 | . . . . 5
⊢ (
[⊊] Or ran (𝑔
∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∀𝑥 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))∀𝑓 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))(𝑥 ⊆ 𝑓 ∨ 𝑓 ⊆ 𝑥)) | 
| 57 | 55, 56 | sylibr 234 | . . . 4
⊢ (
[⊊] Or 𝐴
→ [⊊] Or ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 58 | 28, 57 | syl 17 | . . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) →
[⊊] Or ran (𝑔
∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 59 |  | fin2i 10335 | . . 3
⊢ ((((𝐵 ∖ 𝐶) ∈ FinII ∧ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ⊆ 𝒫 (𝐵 ∖ 𝐶)) ∧ (ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ≠ ∅ ∧ [⊊] Or
ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)))) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 60 | 1, 15, 27, 58, 59 | syl22anc 839 | . 2
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 61 |  | simpll3 1215 | . . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ¬
∪ 𝐴 ∈ 𝐴) | 
| 62 |  | difeq1 4119 | . . . . . . 7
⊢ (𝑔 = 𝑓 → (𝑔 ∖ 𝐶) = (𝑓 ∖ 𝐶)) | 
| 63 | 62 | cbvmptv 5255 | . . . . . 6
⊢ (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∈ 𝐴 ↦ (𝑓 ∖ 𝐶)) | 
| 64 | 63 | elrnmpt 5969 | . . . . 5
⊢ (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → (∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑓 ∈ 𝐴 ∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) | 
| 65 | 64 | ibi 267 | . . . 4
⊢ (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ∃𝑓 ∈ 𝐴 ∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) | 
| 66 |  | eqid 2737 | . . . . . . . . . . . . . . . 16
⊢ (ℎ ∖ 𝐶) = (ℎ ∖ 𝐶) | 
| 67 |  | difeq1 4119 | . . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ℎ → (𝑔 ∖ 𝐶) = (ℎ ∖ 𝐶)) | 
| 68 | 67 | rspceeqv 3645 | . . . . . . . . . . . . . . . 16
⊢ ((ℎ ∈ 𝐴 ∧ (ℎ ∖ 𝐶) = (ℎ ∖ 𝐶)) → ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 69 | 66, 68 | mpan2 691 | . . . . . . . . . . . . . . 15
⊢ (ℎ ∈ 𝐴 → ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 70 | 69 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 71 |  | vex 3484 | . . . . . . . . . . . . . . 15
⊢ ℎ ∈ V | 
| 72 |  | difexg 5329 | . . . . . . . . . . . . . . 15
⊢ (ℎ ∈ V → (ℎ ∖ 𝐶) ∈ V) | 
| 73 | 9 | elrnmpt 5969 | . . . . . . . . . . . . . . 15
⊢ ((ℎ ∖ 𝐶) ∈ V → ((ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶))) | 
| 74 | 71, 72, 73 | mp2b 10 | . . . . . . . . . . . . . 14
⊢ ((ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (ℎ ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 75 | 70, 74 | sylibr 234 | . . . . . . . . . . . . 13
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 76 |  | elssuni 4937 | . . . . . . . . . . . . 13
⊢ ((ℎ ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → (ℎ ∖ 𝐶) ⊆ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 77 | 75, 76 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ⊆ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 78 |  | simplr 769 | . . . . . . . . . . . 12
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) | 
| 79 | 77, 78 | sseqtrd 4020 | . . . . . . . . . . 11
⊢ (((𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶)) | 
| 80 | 79 | adantll 714 | . . . . . . . . . 10
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶)) | 
| 81 |  | unss2 4187 | . . . . . . . . . . 11
⊢ ((ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶) → (𝐶 ∪ (ℎ ∖ 𝐶)) ⊆ (𝐶 ∪ (𝑓 ∖ 𝐶))) | 
| 82 |  | uncom 4158 | . . . . . . . . . . . . . . 15
⊢ (𝐶 ∪ (ℎ ∖ 𝐶)) = ((ℎ ∖ 𝐶) ∪ 𝐶) | 
| 83 |  | undif1 4476 | . . . . . . . . . . . . . . 15
⊢ ((ℎ ∖ 𝐶) ∪ 𝐶) = (ℎ ∪ 𝐶) | 
| 84 | 82, 83 | eqtri 2765 | . . . . . . . . . . . . . 14
⊢ (𝐶 ∪ (ℎ ∖ 𝐶)) = (ℎ ∪ 𝐶) | 
| 85 | 84 | a1i 11 | . . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝐶 ∪ (ℎ ∖ 𝐶)) = (ℎ ∪ 𝐶)) | 
| 86 | 61 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ¬ ∪
𝐴 ∈ 𝐴) | 
| 87 | 16 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → 𝐶 ∈ 𝐴) | 
| 88 |  | simplrr 778 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) | 
| 89 |  | eqeq1 2741 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 = (𝑥 ∖ 𝐶) → (𝑒 = ∅ ↔ (𝑥 ∖ 𝐶) = ∅)) | 
| 90 |  | simpllr 776 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) | 
| 91 |  | ssdif0 4366 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 ⊆ 𝐶 ↔ (𝑓 ∖ 𝐶) = ∅) | 
| 92 | 91 | biimpi 216 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 ⊆ 𝐶 → (𝑓 ∖ 𝐶) = ∅) | 
| 93 | 92 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑓 ∖ 𝐶) = ∅) | 
| 94 | 90, 93 | eqtrd 2777 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = ∅) | 
| 95 |  | uni0c 4934 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = ∅ ↔ ∀𝑒 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))𝑒 = ∅) | 
| 96 | 94, 95 | sylib 218 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∀𝑒 ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))𝑒 = ∅) | 
| 97 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∖ 𝐶) = (𝑥 ∖ 𝐶) | 
| 98 |  | difeq1 4119 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑔 = 𝑥 → (𝑔 ∖ 𝐶) = (𝑥 ∖ 𝐶)) | 
| 99 | 98 | rspceeqv 3645 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∖ 𝐶) = (𝑥 ∖ 𝐶)) → ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 100 | 97, 99 | mpan2 691 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑥 ∈ 𝐴 → ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 101 |  | vex 3484 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 𝑥 ∈ V | 
| 102 |  | difexg 5329 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑥 ∈ V → (𝑥 ∖ 𝐶) ∈ V) | 
| 103 | 9 | elrnmpt 5969 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∖ 𝐶) ∈ V → ((𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶))) | 
| 104 | 101, 102,
103 | mp2b 10 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ↔ ∃𝑔 ∈ 𝐴 (𝑥 ∖ 𝐶) = (𝑔 ∖ 𝐶)) | 
| 105 | 100, 104 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 106 | 105 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∖ 𝐶) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 107 | 89, 96, 106 | rspcdva 3623 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∖ 𝐶) = ∅) | 
| 108 |  | ssdif0 4366 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ⊆ 𝐶 ↔ (𝑥 ∖ 𝐶) = ∅) | 
| 109 | 107, 108 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝑥 ⊆ 𝐶) | 
| 110 | 109 | ralrimiva 3146 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶) | 
| 111 |  | unissb 4939 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (∪ 𝐴
⊆ 𝐶 ↔
∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐶) | 
| 112 | 110, 111 | sylibr 234 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∪ 𝐴 ⊆ 𝐶) | 
| 113 |  | elssuni 4937 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐶 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝐴) | 
| 114 | 113 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → 𝐶 ⊆ ∪ 𝐴) | 
| 115 | 112, 114 | eqssd 4001 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∪ 𝐴 = 𝐶) | 
| 116 |  | simpll 767 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → 𝐶 ∈ 𝐴) | 
| 117 | 115, 116 | eqeltrd 2841 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) ∧ 𝑓 ⊆ 𝐶) → ∪ 𝐴 ∈ 𝐴) | 
| 118 | 117 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶)) → (𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴)) | 
| 119 | 87, 88, 118 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝑓 ⊆ 𝐶 → ∪ 𝐴 ∈ 𝐴)) | 
| 120 | 86, 119 | mtod 198 | . . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ¬ 𝑓 ⊆ 𝐶) | 
| 121 | 28 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → [⊊] Or 𝐴) | 
| 122 |  | simplrl 777 | . . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → 𝑓 ∈ 𝐴) | 
| 123 |  | sorpssi 7749 | . . . . . . . . . . . . . . . 16
⊢ ((
[⊊] Or 𝐴
∧ (𝑓 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓)) | 
| 124 | 121, 122,
87, 123 | syl12anc 837 | . . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓)) | 
| 125 |  | orel1 889 | . . . . . . . . . . . . . . 15
⊢ (¬
𝑓 ⊆ 𝐶 → ((𝑓 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝑓) → 𝐶 ⊆ 𝑓)) | 
| 126 | 120, 124,
125 | sylc 65 | . . . . . . . . . . . . . 14
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → 𝐶 ⊆ 𝑓) | 
| 127 |  | undif 4482 | . . . . . . . . . . . . . 14
⊢ (𝐶 ⊆ 𝑓 ↔ (𝐶 ∪ (𝑓 ∖ 𝐶)) = 𝑓) | 
| 128 | 126, 127 | sylib 218 | . . . . . . . . . . . . 13
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → (𝐶 ∪ (𝑓 ∖ 𝐶)) = 𝑓) | 
| 129 | 85, 128 | sseq12d 4017 | . . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ((𝐶 ∪ (ℎ ∖ 𝐶)) ⊆ (𝐶 ∪ (𝑓 ∖ 𝐶)) ↔ (ℎ ∪ 𝐶) ⊆ 𝑓)) | 
| 130 |  | ssun1 4178 | . . . . . . . . . . . . 13
⊢ ℎ ⊆ (ℎ ∪ 𝐶) | 
| 131 |  | sstr 3992 | . . . . . . . . . . . . 13
⊢ ((ℎ ⊆ (ℎ ∪ 𝐶) ∧ (ℎ ∪ 𝐶) ⊆ 𝑓) → ℎ ⊆ 𝑓) | 
| 132 | 130, 131 | mpan 690 | . . . . . . . . . . . 12
⊢ ((ℎ ∪ 𝐶) ⊆ 𝑓 → ℎ ⊆ 𝑓) | 
| 133 | 129, 132 | biimtrdi 253 | . . . . . . . . . . 11
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ((𝐶 ∪ (ℎ ∖ 𝐶)) ⊆ (𝐶 ∪ (𝑓 ∖ 𝐶)) → ℎ ⊆ 𝑓)) | 
| 134 | 81, 133 | syl5 34 | . . . . . . . . . 10
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ((ℎ ∖ 𝐶) ⊆ (𝑓 ∖ 𝐶) → ℎ ⊆ 𝑓)) | 
| 135 | 80, 134 | mpd 15 | . . . . . . . . 9
⊢
((((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) ∧ ℎ ∈ 𝐴) → ℎ ⊆ 𝑓) | 
| 136 | 135 | ralrimiva 3146 | . . . . . . . 8
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∀ℎ ∈ 𝐴 ℎ ⊆ 𝑓) | 
| 137 |  | unissb 4939 | . . . . . . . 8
⊢ (∪ 𝐴
⊆ 𝑓 ↔
∀ℎ ∈ 𝐴 ℎ ⊆ 𝑓) | 
| 138 | 136, 137 | sylibr 234 | . . . . . . 7
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∪
𝐴 ⊆ 𝑓) | 
| 139 |  | elssuni 4937 | . . . . . . . 8
⊢ (𝑓 ∈ 𝐴 → 𝑓 ⊆ ∪ 𝐴) | 
| 140 | 139 | ad2antrl 728 | . . . . . . 7
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → 𝑓 ⊆ ∪ 𝐴) | 
| 141 | 138, 140 | eqssd 4001 | . . . . . 6
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∪
𝐴 = 𝑓) | 
| 142 |  | simprl 771 | . . . . . 6
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → 𝑓 ∈ 𝐴) | 
| 143 | 141, 142 | eqeltrd 2841 | . . . . 5
⊢
(((((𝐴 ⊆
𝒫 𝐵 ∧
[⊊] Or 𝐴
∧ ¬ ∪ 𝐴 ∈ 𝐴) ∧ (¬ 𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) ∧ (𝑓 ∈ 𝐴 ∧ ∪ ran
(𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶))) → ∪
𝐴 ∈ 𝐴) | 
| 144 | 143 | rexlimdvaa 3156 | . . . 4
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) →
(∃𝑓 ∈ 𝐴 ∪
ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) = (𝑓 ∖ 𝐶) → ∪ 𝐴 ∈ 𝐴)) | 
| 145 | 65, 144 | syl5 34 | . . 3
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → (∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) → ∪ 𝐴 ∈ 𝐴)) | 
| 146 | 61, 145 | mtod 198 | . 2
⊢ ((((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) ∧ (𝐵 ∖ 𝐶) ∈ FinII) → ¬
∪ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶)) ∈ ran (𝑔 ∈ 𝐴 ↦ (𝑔 ∖ 𝐶))) | 
| 147 | 60, 146 | pm2.65da 817 | 1
⊢ (((𝐴 ⊆ 𝒫 𝐵 ∧ [⊊] Or
𝐴 ∧ ¬ ∪ 𝐴
∈ 𝐴) ∧ (¬
𝐶 ∈ Fin ∧ 𝐶 ∈ 𝐴)) → ¬ (𝐵 ∖ 𝐶) ∈ FinII) |