MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprgOLD Structured version   Visualization version   GIF version

Theorem uniprgOLD 4864
Description: Obsolete version of unipr 4862 as of 1-Sep-2024. (Contributed by NM, 25-Aug-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
uniprgOLD ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))

Proof of Theorem uniprgOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4674 . . . 4 (𝑥 = 𝐴 → {𝑥, 𝑦} = {𝐴, 𝑦})
21unieqd 4858 . . 3 (𝑥 = 𝐴 {𝑥, 𝑦} = {𝐴, 𝑦})
3 uneq1 4094 . . 3 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
42, 3eqeq12d 2755 . 2 (𝑥 = 𝐴 → ( {𝑥, 𝑦} = (𝑥𝑦) ↔ {𝐴, 𝑦} = (𝐴𝑦)))
5 preq2 4675 . . . 4 (𝑦 = 𝐵 → {𝐴, 𝑦} = {𝐴, 𝐵})
65unieqd 4858 . . 3 (𝑦 = 𝐵 {𝐴, 𝑦} = {𝐴, 𝐵})
7 uneq2 4095 . . 3 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
86, 7eqeq12d 2755 . 2 (𝑦 = 𝐵 → ( {𝐴, 𝑦} = (𝐴𝑦) ↔ {𝐴, 𝐵} = (𝐴𝐵)))
9 vex 3434 . . 3 𝑥 ∈ V
10 vex 3434 . . 3 𝑦 ∈ V
119, 10unipr 4862 . 2 {𝑥, 𝑦} = (𝑥𝑦)
124, 8, 11vtocl2g 3508 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cun 3889  {cpr 4568   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-un 3896  df-in 3898  df-ss 3908  df-sn 4567  df-pr 4569  df-uni 4845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator