Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Visualization version   GIF version

Theorem unipwrVD 42405
Description: Virtual deduction proof of unipwr 42406. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD 𝐴 𝒫 𝐴

Proof of Theorem unipwrVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3434 . . . . 5 𝑥 ∈ V
21snid 4602 . . . 4 𝑥 ∈ {𝑥}
3 idn1 42147 . . . . 5 (   𝑥𝐴   ▶   𝑥𝐴   )
4 snelpwi 5362 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
53, 4e1a 42200 . . . 4 (   𝑥𝐴   ▶   {𝑥} ∈ 𝒫 𝐴   )
6 elunii 4849 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
72, 5, 6e01an 42265 . . 3 (   𝑥𝐴   ▶   𝑥 𝒫 𝐴   )
87in1 42144 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
98ssriv 3929 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3891  𝒫 cpw 4538  {csn 4566   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-pw 4540  df-sn 4567  df-pr 4569  df-uni 4845  df-vd1 42143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator