Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Visualization version   GIF version

Theorem unipwrVD 44320
Description: Virtual deduction proof of unipwr 44321. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD 𝐴 𝒫 𝐴

Proof of Theorem unipwrVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3477 . . . . 5 𝑥 ∈ V
21snid 4669 . . . 4 𝑥 ∈ {𝑥}
3 idn1 44062 . . . . 5 (   𝑥𝐴   ▶   𝑥𝐴   )
4 snelpwi 5449 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
53, 4e1a 44115 . . . 4 (   𝑥𝐴   ▶   {𝑥} ∈ 𝒫 𝐴   )
6 elunii 4917 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
72, 5, 6e01an 44180 . . 3 (   𝑥𝐴   ▶   𝑥 𝒫 𝐴   )
87in1 44059 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
98ssriv 3986 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  wss 3949  𝒫 cpw 4606  {csn 4632   cuni 4912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3475  df-un 3954  df-in 3956  df-ss 3966  df-pw 4608  df-sn 4633  df-pr 4635  df-uni 4913  df-vd1 44058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator