| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unipwrVD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of unipwr 44858. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| unipwrVD | ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3483 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4661 | . . . 4 ⊢ 𝑥 ∈ {𝑥} |
| 3 | idn1 44599 | . . . . 5 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
| 4 | snelpwi 5447 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 5 | 3, 4 | e1a 44652 | . . . 4 ⊢ ( 𝑥 ∈ 𝐴 ▶ {𝑥} ∈ 𝒫 𝐴 ) |
| 6 | elunii 4911 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 7 | 2, 5, 6 | e01an 44717 | . . 3 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ ∪ 𝒫 𝐴 ) |
| 8 | 7 | in1 44596 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 8 | ssriv 3986 | 1 ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ⊆ wss 3950 𝒫 cpw 4599 {csn 4625 ∪ cuni 4906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-ss 3967 df-pw 4601 df-sn 4626 df-pr 4628 df-uni 4907 df-vd1 44595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |