Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Visualization version   GIF version

Theorem unipwrVD 42030
Description: Virtual deduction proof of unipwr 42031. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD 𝐴 𝒫 𝐴

Proof of Theorem unipwrVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3404 . . . . 5 𝑥 ∈ V
21snid 4562 . . . 4 𝑥 ∈ {𝑥}
3 idn1 41772 . . . . 5 (   𝑥𝐴   ▶   𝑥𝐴   )
4 snelpwi 5313 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
53, 4e1a 41825 . . . 4 (   𝑥𝐴   ▶   {𝑥} ∈ 𝒫 𝐴   )
6 elunii 4811 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
72, 5, 6e01an 41890 . . 3 (   𝑥𝐴   ▶   𝑥 𝒫 𝐴   )
87in1 41769 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
98ssriv 3891 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2114  wss 3853  𝒫 cpw 4498  {csn 4526   cuni 4806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-pw 4500  df-sn 4527  df-pr 4529  df-uni 4807  df-vd1 41768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator