![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unipwrVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of unipwr 43676. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unipwrVD | ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4664 | . . . 4 ⊢ 𝑥 ∈ {𝑥} |
3 | idn1 43417 | . . . . 5 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
4 | snelpwi 5443 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
5 | 3, 4 | e1a 43470 | . . . 4 ⊢ ( 𝑥 ∈ 𝐴 ▶ {𝑥} ∈ 𝒫 𝐴 ) |
6 | elunii 4913 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
7 | 2, 5, 6 | e01an 43535 | . . 3 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ ∪ 𝒫 𝐴 ) |
8 | 7 | in1 43414 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 8 | ssriv 3986 | 1 ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3948 𝒫 cpw 4602 {csn 4628 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-pw 4604 df-sn 4629 df-pr 4631 df-uni 4909 df-vd1 43413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |