![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unipwrVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of unipwr 44804. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unipwrVD | ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4684 | . . . 4 ⊢ 𝑥 ∈ {𝑥} |
3 | idn1 44545 | . . . . 5 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
4 | snelpwi 5463 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
5 | 3, 4 | e1a 44598 | . . . 4 ⊢ ( 𝑥 ∈ 𝐴 ▶ {𝑥} ∈ 𝒫 𝐴 ) |
6 | elunii 4936 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
7 | 2, 5, 6 | e01an 44663 | . . 3 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ ∪ 𝒫 𝐴 ) |
8 | 7 | in1 44542 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
9 | 8 | ssriv 4012 | 1 ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-vd1 44541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |