| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unipwrVD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of unipwr 44822. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| unipwrVD | ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4626 | . . . 4 ⊢ 𝑥 ∈ {𝑥} |
| 3 | idn1 44564 | . . . . 5 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
| 4 | snelpwi 5403 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 5 | 3, 4 | e1a 44617 | . . . 4 ⊢ ( 𝑥 ∈ 𝐴 ▶ {𝑥} ∈ 𝒫 𝐴 ) |
| 6 | elunii 4876 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 7 | 2, 5, 6 | e01an 44682 | . . 3 ⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ ∪ 𝒫 𝐴 ) |
| 8 | 7 | in1 44561 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) |
| 9 | 8 | ssriv 3950 | 1 ⊢ 𝐴 ⊆ ∪ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-pw 4565 df-sn 4590 df-pr 4592 df-uni 4872 df-vd1 44560 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |