Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Visualization version   GIF version

Theorem unipwrVD 44809
Description: Virtual deduction proof of unipwr 44810. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD 𝐴 𝒫 𝐴

Proof of Theorem unipwrVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . 5 𝑥 ∈ V
21snid 4614 . . . 4 𝑥 ∈ {𝑥}
3 idn1 44552 . . . . 5 (   𝑥𝐴   ▶   𝑥𝐴   )
4 snelpwi 5386 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
53, 4e1a 44605 . . . 4 (   𝑥𝐴   ▶   {𝑥} ∈ 𝒫 𝐴   )
6 elunii 4863 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
72, 5, 6e01an 44670 . . 3 (   𝑥𝐴   ▶   𝑥 𝒫 𝐴   )
87in1 44549 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
98ssriv 3939 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wss 3903  𝒫 cpw 4551  {csn 4577   cuni 4858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-un 3908  df-ss 3920  df-pw 4553  df-sn 4578  df-pr 4580  df-uni 4859  df-vd1 44548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator