Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Visualization version   GIF version

Theorem unipwrVD 44803
Description: Virtual deduction proof of unipwr 44804. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD 𝐴 𝒫 𝐴

Proof of Theorem unipwrVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . 5 𝑥 ∈ V
21snid 4684 . . . 4 𝑥 ∈ {𝑥}
3 idn1 44545 . . . . 5 (   𝑥𝐴   ▶   𝑥𝐴   )
4 snelpwi 5463 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
53, 4e1a 44598 . . . 4 (   𝑥𝐴   ▶   {𝑥} ∈ 𝒫 𝐴   )
6 elunii 4936 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
72, 5, 6e01an 44663 . . 3 (   𝑥𝐴   ▶   𝑥 𝒫 𝐴   )
87in1 44542 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
98ssriv 4012 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-vd1 44541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator