Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwrVD Structured version   Visualization version   GIF version

Theorem unipwrVD 43675
Description: Virtual deduction proof of unipwr 43676. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwrVD 𝐴 𝒫 𝐴

Proof of Theorem unipwrVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . 5 𝑥 ∈ V
21snid 4664 . . . 4 𝑥 ∈ {𝑥}
3 idn1 43417 . . . . 5 (   𝑥𝐴   ▶   𝑥𝐴   )
4 snelpwi 5443 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
53, 4e1a 43470 . . . 4 (   𝑥𝐴   ▶   {𝑥} ∈ 𝒫 𝐴   )
6 elunii 4913 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
72, 5, 6e01an 43535 . . 3 (   𝑥𝐴   ▶   𝑥 𝒫 𝐴   )
87in1 43414 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
98ssriv 3986 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3948  𝒫 cpw 4602  {csn 4628   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629  df-pr 4631  df-uni 4909  df-vd1 43413
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator