| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2823 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3576 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4886 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-uni 4884 |
| This theorem is referenced by: ssuni 4908 unipw 5425 opeluu 5445 unon 7825 limuni3 7847 naddsuc2 8713 uniinqs 8811 trcl 9742 rankwflemb 9807 ac5num 10050 dfac3 10135 isf34lem4 10391 axcclem 10471 ttukeylem7 10529 brdom7disj 10545 brdom6disj 10546 wrdexb 14543 dprdfeq0 20005 tgss2 22925 ppttop 22945 isclo 23025 neips 23051 2ndcomap 23396 2ndcsep 23397 locfincmp 23464 comppfsc 23470 txkgen 23590 txconn 23627 basqtop 23649 nrmr0reg 23687 alexsublem 23982 alexsubALTlem4 23988 alexsubALT 23989 ptcmplem4 23993 unirnblps 24358 unirnbl 24359 blbas 24369 met2ndci 24461 bndth 24908 dyadmbllem 25552 opnmbllem 25554 ssdifidllem 33471 ssmxidllem 33488 dya2iocnei 34314 dstfrvunirn 34507 pconnconn 35253 cvmcov2 35297 cvmlift2lem11 35335 cvmlift2lem12 35336 neibastop2lem 36378 onint1 36467 icoreunrn 37377 opnmbllem0 37680 heibor1 37834 unichnidl 38055 prtlem16 38887 prter2 38899 truniALT 44566 unipwrVD 44856 unipwr 44857 truniALTVD 44902 unisnALT 44950 permaxun 45036 restuni3 45142 disjinfi 45216 stoweidlem43 46072 stoweidlem55 46084 salexct 46363 |
| Copyright terms: Public domain | W3C validator |