| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3552 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4861 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-uni 4859 |
| This theorem is referenced by: ssuni 4883 unipw 5393 opeluu 5413 unon 7764 limuni3 7785 naddsuc2 8619 uniinqs 8724 trcl 9624 rankwflemb 9689 ac5num 9930 dfac3 10015 isf34lem4 10271 axcclem 10351 ttukeylem7 10409 brdom7disj 10425 brdom6disj 10426 wrdexb 14432 dprdfeq0 19903 tgss2 22872 ppttop 22892 isclo 22972 neips 22998 2ndcomap 23343 2ndcsep 23344 locfincmp 23411 comppfsc 23417 txkgen 23537 txconn 23574 basqtop 23596 nrmr0reg 23634 alexsublem 23929 alexsubALTlem4 23935 alexsubALT 23936 ptcmplem4 23940 unirnblps 24305 unirnbl 24306 blbas 24316 met2ndci 24408 bndth 24855 dyadmbllem 25498 opnmbllem 25500 ssdifidllem 33393 ssmxidllem 33410 dya2iocnei 34250 dstfrvunirn 34443 pconnconn 35204 cvmcov2 35248 cvmlift2lem11 35286 cvmlift2lem12 35287 neibastop2lem 36334 onint1 36423 icoreunrn 37333 opnmbllem0 37636 heibor1 37790 unichnidl 38011 prtlem16 38848 prter2 38860 truniALT 44515 unipwrVD 44805 unipwr 44806 truniALTVD 44851 unisnALT 44899 permaxun 44985 restuni3 45096 disjinfi 45170 stoweidlem43 46024 stoweidlem55 46036 salexct 46315 |
| Copyright terms: Public domain | W3C validator |