![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
4 | 3 | spcegv 3610 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
5 | 4 | anabsi7 670 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
6 | eluni 4934 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-uni 4932 |
This theorem is referenced by: ssuni 4956 unipw 5470 opeluu 5490 unon 7867 limuni3 7889 naddsuc2 8757 uniinqs 8855 trcl 9797 rankwflemb 9862 ac5num 10105 dfac3 10190 isf34lem4 10446 axcclem 10526 ttukeylem7 10584 brdom7disj 10600 brdom6disj 10601 wrdexb 14573 dprdfeq0 20066 tgss2 23015 ppttop 23035 isclo 23116 neips 23142 2ndcomap 23487 2ndcsep 23488 locfincmp 23555 comppfsc 23561 txkgen 23681 txconn 23718 basqtop 23740 nrmr0reg 23778 alexsublem 24073 alexsubALTlem4 24079 alexsubALT 24080 ptcmplem4 24084 unirnblps 24450 unirnbl 24451 blbas 24461 met2ndci 24556 bndth 25009 dyadmbllem 25653 opnmbllem 25655 ssdifidllem 33449 ssmxidllem 33466 dya2iocnei 34247 dstfrvunirn 34439 pconnconn 35199 cvmcov2 35243 cvmlift2lem11 35281 cvmlift2lem12 35282 neibastop2lem 36326 onint1 36415 icoreunrn 37325 opnmbllem0 37616 heibor1 37770 unichnidl 37991 prtlem16 38825 prter2 38837 truniALT 44512 unipwrVD 44803 unipwr 44804 truniALTVD 44849 unisnALT 44897 restuni3 45020 disjinfi 45099 stoweidlem43 45964 stoweidlem55 45976 salexct 46255 |
Copyright terms: Public domain | W3C validator |