Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
4 | 3 | spcegv 3526 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
5 | 4 | anabsi7 667 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
6 | eluni 4839 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-uni 4837 |
This theorem is referenced by: ssuni 4863 unipw 5360 opeluu 5379 unon 7653 limuni3 7674 uniinqs 8544 trcl 9417 rankwflemb 9482 ac5num 9723 dfac3 9808 isf34lem4 10064 axcclem 10144 ttukeylem7 10202 brdom7disj 10218 brdom6disj 10219 wrdexb 14156 dprdfeq0 19540 tgss2 22045 ppttop 22065 isclo 22146 neips 22172 2ndcomap 22517 2ndcsep 22518 locfincmp 22585 comppfsc 22591 txkgen 22711 txconn 22748 basqtop 22770 nrmr0reg 22808 alexsublem 23103 alexsubALTlem4 23109 alexsubALT 23110 ptcmplem4 23114 unirnblps 23480 unirnbl 23481 blbas 23491 met2ndci 23584 bndth 24027 dyadmbllem 24668 opnmbllem 24670 ssmxidllem 31543 dya2iocnei 32149 dstfrvunirn 32341 pconnconn 33093 cvmcov2 33137 cvmlift2lem11 33175 cvmlift2lem12 33176 neibastop2lem 34476 onint1 34565 icoreunrn 35457 opnmbllem0 35740 heibor1 35895 unichnidl 36116 prtlem16 36810 prter2 36822 truniALT 42050 unipwrVD 42341 unipwr 42342 truniALTVD 42387 unisnALT 42435 restuni3 42556 disjinfi 42620 stoweidlem43 43474 stoweidlem55 43486 salexct 43763 |
Copyright terms: Public domain | W3C validator |