MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunii Structured version   Visualization version   GIF version

Theorem elunii 4845
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
elunii ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem elunii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2828 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
2 eleq1 2827 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐶𝐵𝐶))
31, 2anbi12d 631 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐶) ↔ (𝐴𝐵𝐵𝐶)))
43spcegv 3537 . . 3 (𝐵𝐶 → ((𝐴𝐵𝐵𝐶) → ∃𝑥(𝐴𝑥𝑥𝐶)))
54anabsi7 668 . 2 ((𝐴𝐵𝐵𝐶) → ∃𝑥(𝐴𝑥𝑥𝐶))
6 eluni 4843 . 2 (𝐴 𝐶 ↔ ∃𝑥(𝐴𝑥𝑥𝐶))
75, 6sylibr 233 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2107   cuni 4840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3435  df-uni 4841
This theorem is referenced by:  ssuni  4867  unipw  5367  opeluu  5386  unon  7687  limuni3  7708  uniinqs  8595  trcl  9495  rankwflemb  9560  ac5num  9801  dfac3  9886  isf34lem4  10142  axcclem  10222  ttukeylem7  10280  brdom7disj  10296  brdom6disj  10297  wrdexb  14237  dprdfeq0  19634  tgss2  22146  ppttop  22166  isclo  22247  neips  22273  2ndcomap  22618  2ndcsep  22619  locfincmp  22686  comppfsc  22692  txkgen  22812  txconn  22849  basqtop  22871  nrmr0reg  22909  alexsublem  23204  alexsubALTlem4  23210  alexsubALT  23211  ptcmplem4  23215  unirnblps  23581  unirnbl  23582  blbas  23592  met2ndci  23687  bndth  24130  dyadmbllem  24772  opnmbllem  24774  ssmxidllem  31650  dya2iocnei  32258  dstfrvunirn  32450  pconnconn  33202  cvmcov2  33246  cvmlift2lem11  33284  cvmlift2lem12  33285  neibastop2lem  34558  onint1  34647  icoreunrn  35539  opnmbllem0  35822  heibor1  35977  unichnidl  36198  prtlem16  36890  prter2  36902  truniALT  42168  unipwrVD  42459  unipwr  42460  truniALTVD  42505  unisnALT  42553  restuni3  42674  disjinfi  42738  stoweidlem43  43591  stoweidlem55  43603  salexct  43880
  Copyright terms: Public domain W3C validator