| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3566 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4877 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-uni 4875 |
| This theorem is referenced by: ssuni 4899 unipw 5413 opeluu 5433 unon 7809 limuni3 7831 naddsuc2 8668 uniinqs 8773 trcl 9688 rankwflemb 9753 ac5num 9996 dfac3 10081 isf34lem4 10337 axcclem 10417 ttukeylem7 10475 brdom7disj 10491 brdom6disj 10492 wrdexb 14497 dprdfeq0 19961 tgss2 22881 ppttop 22901 isclo 22981 neips 23007 2ndcomap 23352 2ndcsep 23353 locfincmp 23420 comppfsc 23426 txkgen 23546 txconn 23583 basqtop 23605 nrmr0reg 23643 alexsublem 23938 alexsubALTlem4 23944 alexsubALT 23945 ptcmplem4 23949 unirnblps 24314 unirnbl 24315 blbas 24325 met2ndci 24417 bndth 24864 dyadmbllem 25507 opnmbllem 25509 ssdifidllem 33434 ssmxidllem 33451 dya2iocnei 34280 dstfrvunirn 34473 pconnconn 35225 cvmcov2 35269 cvmlift2lem11 35307 cvmlift2lem12 35308 neibastop2lem 36355 onint1 36444 icoreunrn 37354 opnmbllem0 37657 heibor1 37811 unichnidl 38032 prtlem16 38869 prter2 38881 truniALT 44538 unipwrVD 44828 unipwr 44829 truniALTVD 44874 unisnALT 44922 permaxun 45008 restuni3 45119 disjinfi 45193 stoweidlem43 46048 stoweidlem55 46060 salexct 46339 |
| Copyright terms: Public domain | W3C validator |