MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunii Structured version   Visualization version   GIF version

Theorem elunii 4872
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
elunii ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem elunii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2817 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
2 eleq1 2816 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐶𝐵𝐶))
31, 2anbi12d 632 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐶) ↔ (𝐴𝐵𝐵𝐶)))
43spcegv 3560 . . 3 (𝐵𝐶 → ((𝐴𝐵𝐵𝐶) → ∃𝑥(𝐴𝑥𝑥𝐶)))
54anabsi7 671 . 2 ((𝐴𝐵𝐵𝐶) → ∃𝑥(𝐴𝑥𝑥𝐶))
6 eluni 4870 . 2 (𝐴 𝐶 ↔ ∃𝑥(𝐴𝑥𝑥𝐶))
75, 6sylibr 234 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109   cuni 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-uni 4868
This theorem is referenced by:  ssuni  4892  unipw  5405  opeluu  5425  unon  7786  limuni3  7808  naddsuc2  8642  uniinqs  8747  trcl  9657  rankwflemb  9722  ac5num  9965  dfac3  10050  isf34lem4  10306  axcclem  10386  ttukeylem7  10444  brdom7disj  10460  brdom6disj  10461  wrdexb  14466  dprdfeq0  19930  tgss2  22850  ppttop  22870  isclo  22950  neips  22976  2ndcomap  23321  2ndcsep  23322  locfincmp  23389  comppfsc  23395  txkgen  23515  txconn  23552  basqtop  23574  nrmr0reg  23612  alexsublem  23907  alexsubALTlem4  23913  alexsubALT  23914  ptcmplem4  23918  unirnblps  24283  unirnbl  24284  blbas  24294  met2ndci  24386  bndth  24833  dyadmbllem  25476  opnmbllem  25478  ssdifidllem  33400  ssmxidllem  33417  dya2iocnei  34246  dstfrvunirn  34439  pconnconn  35191  cvmcov2  35235  cvmlift2lem11  35273  cvmlift2lem12  35274  neibastop2lem  36321  onint1  36410  icoreunrn  37320  opnmbllem0  37623  heibor1  37777  unichnidl  37998  prtlem16  38835  prter2  38847  truniALT  44504  unipwrVD  44794  unipwr  44795  truniALTVD  44840  unisnALT  44888  permaxun  44974  restuni3  45085  disjinfi  45159  stoweidlem43  46014  stoweidlem55  46026  salexct  46305
  Copyright terms: Public domain W3C validator