Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
4 | 3 | spcegv 3537 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
5 | 4 | anabsi7 668 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
6 | eluni 4843 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2107 ∪ cuni 4840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-uni 4841 |
This theorem is referenced by: ssuni 4867 unipw 5367 opeluu 5386 unon 7687 limuni3 7708 uniinqs 8595 trcl 9495 rankwflemb 9560 ac5num 9801 dfac3 9886 isf34lem4 10142 axcclem 10222 ttukeylem7 10280 brdom7disj 10296 brdom6disj 10297 wrdexb 14237 dprdfeq0 19634 tgss2 22146 ppttop 22166 isclo 22247 neips 22273 2ndcomap 22618 2ndcsep 22619 locfincmp 22686 comppfsc 22692 txkgen 22812 txconn 22849 basqtop 22871 nrmr0reg 22909 alexsublem 23204 alexsubALTlem4 23210 alexsubALT 23211 ptcmplem4 23215 unirnblps 23581 unirnbl 23582 blbas 23592 met2ndci 23687 bndth 24130 dyadmbllem 24772 opnmbllem 24774 ssmxidllem 31650 dya2iocnei 32258 dstfrvunirn 32450 pconnconn 33202 cvmcov2 33246 cvmlift2lem11 33284 cvmlift2lem12 33285 neibastop2lem 34558 onint1 34647 icoreunrn 35539 opnmbllem0 35822 heibor1 35977 unichnidl 36198 prtlem16 36890 prter2 36902 truniALT 42168 unipwrVD 42459 unipwr 42460 truniALTVD 42505 unisnALT 42553 restuni3 42674 disjinfi 42738 stoweidlem43 43591 stoweidlem55 43603 salexct 43880 |
Copyright terms: Public domain | W3C validator |