![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
4 | 3 | spcegv 3597 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
6 | eluni 4915 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-uni 4913 |
This theorem is referenced by: ssuni 4937 unipw 5461 opeluu 5481 unon 7851 limuni3 7873 naddsuc2 8738 uniinqs 8836 trcl 9766 rankwflemb 9831 ac5num 10074 dfac3 10159 isf34lem4 10415 axcclem 10495 ttukeylem7 10553 brdom7disj 10569 brdom6disj 10570 wrdexb 14560 dprdfeq0 20057 tgss2 23010 ppttop 23030 isclo 23111 neips 23137 2ndcomap 23482 2ndcsep 23483 locfincmp 23550 comppfsc 23556 txkgen 23676 txconn 23713 basqtop 23735 nrmr0reg 23773 alexsublem 24068 alexsubALTlem4 24074 alexsubALT 24075 ptcmplem4 24079 unirnblps 24445 unirnbl 24446 blbas 24456 met2ndci 24551 bndth 25004 dyadmbllem 25648 opnmbllem 25650 ssdifidllem 33464 ssmxidllem 33481 dya2iocnei 34264 dstfrvunirn 34456 pconnconn 35216 cvmcov2 35260 cvmlift2lem11 35298 cvmlift2lem12 35299 neibastop2lem 36343 onint1 36432 icoreunrn 37342 opnmbllem0 37643 heibor1 37797 unichnidl 38018 prtlem16 38851 prter2 38863 truniALT 44539 unipwrVD 44830 unipwr 44831 truniALTVD 44876 unisnALT 44924 restuni3 45058 disjinfi 45135 stoweidlem43 45999 stoweidlem55 46011 salexct 46290 |
Copyright terms: Public domain | W3C validator |