MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunii Structured version   Visualization version   GIF version

Theorem elunii 4876
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
elunii ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem elunii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2817 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
2 eleq1 2816 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐶𝐵𝐶))
31, 2anbi12d 632 . . . 4 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐶) ↔ (𝐴𝐵𝐵𝐶)))
43spcegv 3563 . . 3 (𝐵𝐶 → ((𝐴𝐵𝐵𝐶) → ∃𝑥(𝐴𝑥𝑥𝐶)))
54anabsi7 671 . 2 ((𝐴𝐵𝐵𝐶) → ∃𝑥(𝐴𝑥𝑥𝐶))
6 eluni 4874 . 2 (𝐴 𝐶 ↔ ∃𝑥(𝐴𝑥𝑥𝐶))
75, 6sylibr 234 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-uni 4872
This theorem is referenced by:  ssuni  4896  unipw  5410  opeluu  5430  unon  7806  limuni3  7828  naddsuc2  8665  uniinqs  8770  trcl  9681  rankwflemb  9746  ac5num  9989  dfac3  10074  isf34lem4  10330  axcclem  10410  ttukeylem7  10468  brdom7disj  10484  brdom6disj  10485  wrdexb  14490  dprdfeq0  19954  tgss2  22874  ppttop  22894  isclo  22974  neips  23000  2ndcomap  23345  2ndcsep  23346  locfincmp  23413  comppfsc  23419  txkgen  23539  txconn  23576  basqtop  23598  nrmr0reg  23636  alexsublem  23931  alexsubALTlem4  23937  alexsubALT  23938  ptcmplem4  23942  unirnblps  24307  unirnbl  24308  blbas  24318  met2ndci  24410  bndth  24857  dyadmbllem  25500  opnmbllem  25502  ssdifidllem  33427  ssmxidllem  33444  dya2iocnei  34273  dstfrvunirn  34466  pconnconn  35218  cvmcov2  35262  cvmlift2lem11  35300  cvmlift2lem12  35301  neibastop2lem  36348  onint1  36437  icoreunrn  37347  opnmbllem0  37650  heibor1  37804  unichnidl  38025  prtlem16  38862  prter2  38874  truniALT  44531  unipwrVD  44821  unipwr  44822  truniALTVD  44867  unisnALT  44915  permaxun  45001  restuni3  45112  disjinfi  45186  stoweidlem43  46041  stoweidlem55  46053  salexct  46332
  Copyright terms: Public domain W3C validator