| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3563 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4874 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-uni 4872 |
| This theorem is referenced by: ssuni 4896 unipw 5410 opeluu 5430 unon 7806 limuni3 7828 naddsuc2 8665 uniinqs 8770 trcl 9681 rankwflemb 9746 ac5num 9989 dfac3 10074 isf34lem4 10330 axcclem 10410 ttukeylem7 10468 brdom7disj 10484 brdom6disj 10485 wrdexb 14490 dprdfeq0 19954 tgss2 22874 ppttop 22894 isclo 22974 neips 23000 2ndcomap 23345 2ndcsep 23346 locfincmp 23413 comppfsc 23419 txkgen 23539 txconn 23576 basqtop 23598 nrmr0reg 23636 alexsublem 23931 alexsubALTlem4 23937 alexsubALT 23938 ptcmplem4 23942 unirnblps 24307 unirnbl 24308 blbas 24318 met2ndci 24410 bndth 24857 dyadmbllem 25500 opnmbllem 25502 ssdifidllem 33427 ssmxidllem 33444 dya2iocnei 34273 dstfrvunirn 34466 pconnconn 35218 cvmcov2 35262 cvmlift2lem11 35300 cvmlift2lem12 35301 neibastop2lem 36348 onint1 36437 icoreunrn 37347 opnmbllem0 37650 heibor1 37804 unichnidl 38025 prtlem16 38862 prter2 38874 truniALT 44531 unipwrVD 44821 unipwr 44822 truniALTVD 44867 unisnALT 44915 permaxun 45001 restuni3 45112 disjinfi 45186 stoweidlem43 46041 stoweidlem55 46053 salexct 46332 |
| Copyright terms: Public domain | W3C validator |