| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3560 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4870 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-uni 4868 |
| This theorem is referenced by: ssuni 4892 unipw 5405 opeluu 5425 unon 7786 limuni3 7808 naddsuc2 8642 uniinqs 8747 trcl 9657 rankwflemb 9722 ac5num 9965 dfac3 10050 isf34lem4 10306 axcclem 10386 ttukeylem7 10444 brdom7disj 10460 brdom6disj 10461 wrdexb 14466 dprdfeq0 19938 tgss2 22907 ppttop 22927 isclo 23007 neips 23033 2ndcomap 23378 2ndcsep 23379 locfincmp 23446 comppfsc 23452 txkgen 23572 txconn 23609 basqtop 23631 nrmr0reg 23669 alexsublem 23964 alexsubALTlem4 23970 alexsubALT 23971 ptcmplem4 23975 unirnblps 24340 unirnbl 24341 blbas 24351 met2ndci 24443 bndth 24890 dyadmbllem 25533 opnmbllem 25535 ssdifidllem 33420 ssmxidllem 33437 dya2iocnei 34266 dstfrvunirn 34459 pconnconn 35211 cvmcov2 35255 cvmlift2lem11 35293 cvmlift2lem12 35294 neibastop2lem 36341 onint1 36430 icoreunrn 37340 opnmbllem0 37643 heibor1 37797 unichnidl 38018 prtlem16 38855 prter2 38867 truniALT 44524 unipwrVD 44814 unipwr 44815 truniALTVD 44860 unisnALT 44908 permaxun 44994 restuni3 45105 disjinfi 45179 stoweidlem43 46034 stoweidlem55 46046 salexct 46325 |
| Copyright terms: Public domain | W3C validator |