![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2823 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
4 | 3 | spcegv 3588 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
5 | 4 | anabsi7 670 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
6 | eluni 4912 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-uni 4910 |
This theorem is referenced by: ssuni 4937 unipw 5451 opeluu 5471 unon 7819 limuni3 7841 uniinqs 8791 trcl 9723 rankwflemb 9788 ac5num 10031 dfac3 10116 isf34lem4 10372 axcclem 10452 ttukeylem7 10510 brdom7disj 10526 brdom6disj 10527 wrdexb 14475 dprdfeq0 19892 tgss2 22490 ppttop 22510 isclo 22591 neips 22617 2ndcomap 22962 2ndcsep 22963 locfincmp 23030 comppfsc 23036 txkgen 23156 txconn 23193 basqtop 23215 nrmr0reg 23253 alexsublem 23548 alexsubALTlem4 23554 alexsubALT 23555 ptcmplem4 23559 unirnblps 23925 unirnbl 23926 blbas 23936 met2ndci 24031 bndth 24474 dyadmbllem 25116 opnmbllem 25118 ssmxidllem 32620 dya2iocnei 33312 dstfrvunirn 33504 pconnconn 34253 cvmcov2 34297 cvmlift2lem11 34335 cvmlift2lem12 34336 neibastop2lem 35293 onint1 35382 icoreunrn 36288 opnmbllem0 36572 heibor1 36726 unichnidl 36947 prtlem16 37787 prter2 37799 naddsuc2 42191 truniALT 43350 unipwrVD 43641 unipwr 43642 truniALTVD 43687 unisnALT 43735 restuni3 43855 disjinfi 43939 stoweidlem43 44807 stoweidlem55 44819 salexct 45098 |
Copyright terms: Public domain | W3C validator |