| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2819 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3547 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4859 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-uni 4857 |
| This theorem is referenced by: ssuni 4881 unipw 5389 opeluu 5408 unon 7761 limuni3 7782 naddsuc2 8616 uniinqs 8721 trcl 9618 rankwflemb 9686 ac5num 9927 dfac3 10012 isf34lem4 10268 axcclem 10348 ttukeylem7 10406 brdom7disj 10422 brdom6disj 10423 wrdexb 14432 dprdfeq0 19936 tgss2 22902 ppttop 22922 isclo 23002 neips 23028 2ndcomap 23373 2ndcsep 23374 locfincmp 23441 comppfsc 23447 txkgen 23567 txconn 23604 basqtop 23626 nrmr0reg 23664 alexsublem 23959 alexsubALTlem4 23965 alexsubALT 23966 ptcmplem4 23970 unirnblps 24334 unirnbl 24335 blbas 24345 met2ndci 24437 bndth 24884 dyadmbllem 25527 opnmbllem 25529 ssdifidllem 33421 ssmxidllem 33438 dya2iocnei 34295 dstfrvunirn 34488 pconnconn 35275 cvmcov2 35319 cvmlift2lem11 35357 cvmlift2lem12 35358 neibastop2lem 36402 onint1 36491 icoreunrn 37401 opnmbllem0 37704 heibor1 37858 unichnidl 38079 prtlem16 38916 prter2 38928 truniALT 44582 unipwrVD 44872 unipwr 44873 truniALTVD 44918 unisnALT 44966 permaxun 45052 restuni3 45163 disjinfi 45237 stoweidlem43 46089 stoweidlem55 46101 salexct 46380 |
| Copyright terms: Public domain | W3C validator |