| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version | ||
| Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
| 4 | 3 | spcegv 3560 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
| 5 | 4 | anabsi7 671 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
| 6 | eluni 4870 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cuni 4867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-uni 4868 |
| This theorem is referenced by: ssuni 4892 unipw 5405 opeluu 5425 unon 7786 limuni3 7808 naddsuc2 8642 uniinqs 8747 trcl 9657 rankwflemb 9722 ac5num 9965 dfac3 10050 isf34lem4 10306 axcclem 10386 ttukeylem7 10444 brdom7disj 10460 brdom6disj 10461 wrdexb 14466 dprdfeq0 19930 tgss2 22850 ppttop 22870 isclo 22950 neips 22976 2ndcomap 23321 2ndcsep 23322 locfincmp 23389 comppfsc 23395 txkgen 23515 txconn 23552 basqtop 23574 nrmr0reg 23612 alexsublem 23907 alexsubALTlem4 23913 alexsubALT 23914 ptcmplem4 23918 unirnblps 24283 unirnbl 24284 blbas 24294 met2ndci 24386 bndth 24833 dyadmbllem 25476 opnmbllem 25478 ssdifidllem 33400 ssmxidllem 33417 dya2iocnei 34246 dstfrvunirn 34439 pconnconn 35191 cvmcov2 35235 cvmlift2lem11 35273 cvmlift2lem12 35274 neibastop2lem 36321 onint1 36410 icoreunrn 37320 opnmbllem0 37623 heibor1 37777 unichnidl 37998 prtlem16 38835 prter2 38847 truniALT 44504 unipwrVD 44794 unipwr 44795 truniALTVD 44840 unisnALT 44888 permaxun 44974 restuni3 45085 disjinfi 45159 stoweidlem43 46014 stoweidlem55 46026 salexct 46305 |
| Copyright terms: Public domain | W3C validator |