![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elunii | Structured version Visualization version GIF version |
Description: Membership in class union. (Contributed by NM, 24-Mar-1995.) |
Ref | Expression |
---|---|
elunii | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2870 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | eleq1 2869 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶))) |
4 | 3 | spcegv 3538 | . . 3 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶))) |
5 | 4 | anabsi7 667 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) |
6 | eluni 4750 | . 2 ⊢ (𝐴 ∈ ∪ 𝐶 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | sylibr 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∃wex 1762 ∈ wcel 2080 ∪ cuni 4747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-v 3438 df-uni 4748 |
This theorem is referenced by: ssuni 4769 unipw 5237 opeluu 5257 unon 7405 limuni3 7426 uniinqs 8230 trcl 9019 rankwflemb 9071 ac5num 9311 dfac3 9396 isf34lem4 9648 axcclem 9728 ttukeylem7 9786 brdom7disj 9802 brdom6disj 9803 wrdexb 13719 dprdfeq0 18861 tgss2 21279 ppttop 21299 isclo 21379 neips 21405 2ndcomap 21750 2ndcsep 21751 locfincmp 21818 comppfsc 21824 txkgen 21944 txconn 21981 basqtop 22003 nrmr0reg 22041 alexsublem 22336 alexsubALTlem4 22342 alexsubALT 22343 ptcmplem4 22347 unirnblps 22712 unirnbl 22713 blbas 22723 met2ndci 22815 bndth 23245 dyadmbllem 23883 opnmbllem 23885 dya2iocnei 31149 dstfrvunirn 31341 pconnconn 32080 cvmcov2 32124 cvmlift2lem11 32162 cvmlift2lem12 32163 neibastop2lem 33311 onint1 33400 icoreunrn 34184 opnmbllem0 34472 heibor1 34633 unichnidl 34854 prtlem16 35549 prter2 35561 truniALT 40427 unipwrVD 40718 unipwr 40719 truniALTVD 40764 unisnALT 40812 restuni3 40937 disjinfi 41007 stoweidlem43 41884 stoweidlem55 41896 salexct 42173 |
Copyright terms: Public domain | W3C validator |