| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: wdomtr 9528 ltaddsub 11652 leaddsub 11654 eqneg 11902 sqreulem 15326 brcic 17760 nmzsubg 19097 f1omvdconj 19376 dfod2 19494 odf1o2 19503 cyggenod 19814 0ringdif 20436 lvecvscan 21021 znidomb 21471 mdetunilem9 22507 iccpnfcnv 24842 dvcvx 25925 cxple2 26606 wilthlem1 26978 lgslem1 27208 eucliddivs 28265 colinearalglem2 28834 axeuclidlem 28889 axcontlem7 28897 fusgrfisstep 29256 hvmulcan 31001 unopf1o 31845 ballotlemrv 34511 subfacp1lem3 35169 subfacp1lem5 35171 wl-sbcom2d 37549 poimirlem26 37640 areacirclem1 37702 areacirc 37707 cdleme50eq 40535 hdmapeq0 41838 hdmap11 41842 ef11d 42327 rmxdiophlem 43004 ordeldif1o 43249 ceilbi 47334 nnsum3primesle9 47795 |
| Copyright terms: Public domain | W3C validator |