| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: wdomtr 9535 ltaddsub 11659 leaddsub 11661 eqneg 11909 sqreulem 15333 brcic 17767 nmzsubg 19104 f1omvdconj 19383 dfod2 19501 odf1o2 19510 cyggenod 19821 0ringdif 20443 lvecvscan 21028 znidomb 21478 mdetunilem9 22514 iccpnfcnv 24849 dvcvx 25932 cxple2 26613 wilthlem1 26985 lgslem1 27215 eucliddivs 28272 colinearalglem2 28841 axeuclidlem 28896 axcontlem7 28904 fusgrfisstep 29263 hvmulcan 31008 unopf1o 31852 ballotlemrv 34518 subfacp1lem3 35176 subfacp1lem5 35178 wl-sbcom2d 37556 poimirlem26 37647 areacirclem1 37709 areacirc 37714 cdleme50eq 40542 hdmapeq0 41845 hdmap11 41849 ef11d 42334 rmxdiophlem 43011 ordeldif1o 43256 ceilbi 47338 nnsum3primesle9 47799 |
| Copyright terms: Public domain | W3C validator |