MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr3rd Structured version   Visualization version   GIF version

Theorem 3bitr3rd 310
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr3d.1 (𝜑 → (𝜓𝜒))
3bitr3d.2 (𝜑 → (𝜓𝜃))
3bitr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3bitr3rd (𝜑 → (𝜏𝜃))

Proof of Theorem 3bitr3rd
StepHypRef Expression
1 3bitr3d.3 . 2 (𝜑 → (𝜒𝜏))
2 3bitr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitr3d.2 . . 3 (𝜑 → (𝜓𝜃))
42, 3bitr3d 281 . 2 (𝜑 → (𝜒𝜃))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  wdomtr  9471  ltaddsub  11601  leaddsub  11603  eqneg  11851  sqreulem  15277  brcic  17715  nmzsubg  19087  f1omvdconj  19368  dfod2  19486  odf1o2  19495  cyggenod  19806  0ringdif  20452  lvecvscan  21058  znidomb  21508  mdetunilem9  22545  iccpnfcnv  24879  dvcvx  25962  cxple2  26643  wilthlem1  27015  lgslem1  27245  eucliddivs  28311  colinearalglem2  28896  axeuclidlem  28951  axcontlem7  28959  fusgrfisstep  29318  hvmulcan  31063  unopf1o  31907  ballotlemrv  34544  subfacp1lem3  35237  subfacp1lem5  35239  wl-sbcom2d  37616  poimirlem26  37696  areacirclem1  37758  areacirc  37763  cdleme50eq  40650  hdmapeq0  41953  hdmap11  41957  ef11d  42447  rmxdiophlem  43122  ordeldif1o  43367  ceilbi  47447  nnsum3primesle9  47908
  Copyright terms: Public domain W3C validator