| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: wdomtr 9456 ltaddsub 11583 leaddsub 11585 eqneg 11833 sqreulem 15259 brcic 17697 nmzsubg 19070 f1omvdconj 19351 dfod2 19469 odf1o2 19478 cyggenod 19789 0ringdif 20435 lvecvscan 21041 znidomb 21491 mdetunilem9 22528 iccpnfcnv 24862 dvcvx 25945 cxple2 26626 wilthlem1 26998 lgslem1 27228 eucliddivs 28294 colinearalglem2 28878 axeuclidlem 28933 axcontlem7 28941 fusgrfisstep 29300 hvmulcan 31042 unopf1o 31886 ballotlemrv 34523 subfacp1lem3 35194 subfacp1lem5 35196 wl-sbcom2d 37574 poimirlem26 37665 areacirclem1 37727 areacirc 37732 cdleme50eq 40559 hdmapeq0 41862 hdmap11 41866 ef11d 42351 rmxdiophlem 43027 ordeldif1o 43272 ceilbi 47343 nnsum3primesle9 47804 |
| Copyright terms: Public domain | W3C validator |