| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: wdomtr 9471 ltaddsub 11601 leaddsub 11603 eqneg 11851 sqreulem 15277 brcic 17715 nmzsubg 19087 f1omvdconj 19368 dfod2 19486 odf1o2 19495 cyggenod 19806 0ringdif 20452 lvecvscan 21058 znidomb 21508 mdetunilem9 22545 iccpnfcnv 24879 dvcvx 25962 cxple2 26643 wilthlem1 27015 lgslem1 27245 eucliddivs 28311 colinearalglem2 28896 axeuclidlem 28951 axcontlem7 28959 fusgrfisstep 29318 hvmulcan 31063 unopf1o 31907 ballotlemrv 34544 subfacp1lem3 35237 subfacp1lem5 35239 wl-sbcom2d 37616 poimirlem26 37696 areacirclem1 37758 areacirc 37763 cdleme50eq 40650 hdmapeq0 41953 hdmap11 41957 ef11d 42447 rmxdiophlem 43122 ordeldif1o 43367 ceilbi 47447 nnsum3primesle9 47908 |
| Copyright terms: Public domain | W3C validator |