| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: wdomtr 9486 ltaddsub 11612 leaddsub 11614 eqneg 11862 sqreulem 15285 brcic 17723 nmzsubg 19062 f1omvdconj 19343 dfod2 19461 odf1o2 19470 cyggenod 19781 0ringdif 20430 lvecvscan 21036 znidomb 21486 mdetunilem9 22523 iccpnfcnv 24858 dvcvx 25941 cxple2 26622 wilthlem1 26994 lgslem1 27224 eucliddivs 28288 colinearalglem2 28870 axeuclidlem 28925 axcontlem7 28933 fusgrfisstep 29292 hvmulcan 31034 unopf1o 31878 ballotlemrv 34487 subfacp1lem3 35154 subfacp1lem5 35156 wl-sbcom2d 37534 poimirlem26 37625 areacirclem1 37687 areacirc 37692 cdleme50eq 40520 hdmapeq0 41823 hdmap11 41827 ef11d 42312 rmxdiophlem 42988 ordeldif1o 43233 ceilbi 47318 nnsum3primesle9 47779 |
| Copyright terms: Public domain | W3C validator |