![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: wdomtr 9644 ltaddsub 11764 leaddsub 11766 eqneg 12014 sqreulem 15408 brcic 17859 nmzsubg 19205 f1omvdconj 19488 dfod2 19606 odf1o2 19615 cyggenod 19926 0ringdif 20553 lvecvscan 21136 znidomb 21603 mdetunilem9 22647 iccpnfcnv 24994 dvcvx 26079 cxple2 26757 wilthlem1 27129 lgslem1 27359 colinearalglem2 28940 axeuclidlem 28995 axcontlem7 29003 fusgrfisstep 29364 hvmulcan 31104 unopf1o 31948 ballotlemrv 34484 subfacp1lem3 35150 subfacp1lem5 35152 wl-sbcom2d 37515 poimirlem26 37606 areacirclem1 37668 areacirc 37673 cdleme50eq 40498 hdmapeq0 41801 hdmap11 41805 ef11d 42327 rmxdiophlem 42972 ordeldif1o 43222 nnsum3primesle9 47668 |
Copyright terms: Public domain | W3C validator |