Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitr3d 280 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
5 | 1, 4 | bitr3d 280 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: wdomtr 9264 ltaddsub 11379 leaddsub 11381 eqneg 11625 sqreulem 14999 brcic 17427 nmzsubg 18708 f1omvdconj 18969 dfod2 19086 odf1o2 19093 cyggenod 19399 lvecvscan 20288 znidomb 20681 mdetunilem9 21677 iccpnfcnv 24013 dvcvx 25089 cxple2 25757 wilthlem1 26122 lgslem1 26350 colinearalglem2 27178 axeuclidlem 27233 axcontlem7 27241 fusgrfisstep 27599 hvmulcan 29335 unopf1o 30179 ballotlemrv 32386 subfacp1lem3 33044 subfacp1lem5 33046 wl-sbcom2d 35643 poimirlem26 35730 areacirclem1 35792 areacirc 35797 cdleme50eq 38482 hdmapeq0 39785 hdmap11 39789 rmxdiophlem 40753 nnsum3primesle9 45134 0ringdif 45316 |
Copyright terms: Public domain | W3C validator |