![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version |
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
Ref | Expression |
---|---|
3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: wdomtr 9613 ltaddsub 11735 leaddsub 11737 eqneg 11985 sqreulem 15395 brcic 17846 nmzsubg 19196 f1omvdconj 19479 dfod2 19597 odf1o2 19606 cyggenod 19917 0ringdif 20544 lvecvscan 21131 znidomb 21598 mdetunilem9 22642 iccpnfcnv 24989 dvcvx 26074 cxple2 26754 wilthlem1 27126 lgslem1 27356 colinearalglem2 28937 axeuclidlem 28992 axcontlem7 29000 fusgrfisstep 29361 hvmulcan 31101 unopf1o 31945 ballotlemrv 34501 subfacp1lem3 35167 subfacp1lem5 35169 wl-sbcom2d 37542 poimirlem26 37633 areacirclem1 37695 areacirc 37700 cdleme50eq 40524 hdmapeq0 41827 hdmap11 41831 ef11d 42354 rmxdiophlem 43004 ordeldif1o 43250 nnsum3primesle9 47719 |
Copyright terms: Public domain | W3C validator |