MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr3rd Structured version   Visualization version   GIF version

Theorem 3bitr3rd 310
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr3d.1 (𝜑 → (𝜓𝜒))
3bitr3d.2 (𝜑 → (𝜓𝜃))
3bitr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3bitr3rd (𝜑 → (𝜏𝜃))

Proof of Theorem 3bitr3rd
StepHypRef Expression
1 3bitr3d.3 . 2 (𝜑 → (𝜒𝜏))
2 3bitr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitr3d.2 . . 3 (𝜑 → (𝜓𝜃))
42, 3bitr3d 281 . 2 (𝜑 → (𝜒𝜃))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  wdomtr  9486  ltaddsub  11612  leaddsub  11614  eqneg  11862  sqreulem  15285  brcic  17723  nmzsubg  19062  f1omvdconj  19343  dfod2  19461  odf1o2  19470  cyggenod  19781  0ringdif  20430  lvecvscan  21036  znidomb  21486  mdetunilem9  22523  iccpnfcnv  24858  dvcvx  25941  cxple2  26622  wilthlem1  26994  lgslem1  27224  eucliddivs  28288  colinearalglem2  28870  axeuclidlem  28925  axcontlem7  28933  fusgrfisstep  29292  hvmulcan  31034  unopf1o  31878  ballotlemrv  34487  subfacp1lem3  35154  subfacp1lem5  35156  wl-sbcom2d  37534  poimirlem26  37625  areacirclem1  37687  areacirc  37692  cdleme50eq  40520  hdmapeq0  41823  hdmap11  41827  ef11d  42312  rmxdiophlem  42988  ordeldif1o  43233  ceilbi  47318  nnsum3primesle9  47779
  Copyright terms: Public domain W3C validator