| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3bitr3rd | Structured version Visualization version GIF version | ||
| Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3bitr3d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 3bitr3d.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| 3bitr3d.3 | ⊢ (𝜑 → (𝜒 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| 3bitr3rd | ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.3 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜏)) | |
| 2 | 3bitr3d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 3bitr3d.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 5 | 1, 4 | bitr3d 281 | 1 ⊢ (𝜑 → (𝜏 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: wdomtr 9594 ltaddsub 11716 leaddsub 11718 eqneg 11966 sqreulem 15383 brcic 17816 nmzsubg 19153 f1omvdconj 19432 dfod2 19550 odf1o2 19559 cyggenod 19870 0ringdif 20492 lvecvscan 21077 znidomb 21527 mdetunilem9 22563 iccpnfcnv 24898 dvcvx 25982 cxple2 26663 wilthlem1 27035 lgslem1 27265 eucliddivs 28322 colinearalglem2 28891 axeuclidlem 28946 axcontlem7 28954 fusgrfisstep 29313 hvmulcan 31058 unopf1o 31902 ballotlemrv 34557 subfacp1lem3 35209 subfacp1lem5 35211 wl-sbcom2d 37584 poimirlem26 37675 areacirclem1 37737 areacirc 37742 cdleme50eq 40565 hdmapeq0 41868 hdmap11 41872 ef11d 42355 rmxdiophlem 43006 ordeldif1o 43251 ceilbi 47329 nnsum3primesle9 47775 |
| Copyright terms: Public domain | W3C validator |