MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr3rd Structured version   Visualization version   GIF version

Theorem 3bitr3rd 310
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr3d.1 (𝜑 → (𝜓𝜒))
3bitr3d.2 (𝜑 → (𝜓𝜃))
3bitr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3bitr3rd (𝜑 → (𝜏𝜃))

Proof of Theorem 3bitr3rd
StepHypRef Expression
1 3bitr3d.3 . 2 (𝜑 → (𝜒𝜏))
2 3bitr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitr3d.2 . . 3 (𝜑 → (𝜓𝜃))
42, 3bitr3d 281 . 2 (𝜑 → (𝜒𝜃))
51, 4bitr3d 281 1 (𝜑 → (𝜏𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  wdomtr  9644  ltaddsub  11764  leaddsub  11766  eqneg  12014  sqreulem  15408  brcic  17859  nmzsubg  19205  f1omvdconj  19488  dfod2  19606  odf1o2  19615  cyggenod  19926  0ringdif  20553  lvecvscan  21136  znidomb  21603  mdetunilem9  22647  iccpnfcnv  24994  dvcvx  26079  cxple2  26757  wilthlem1  27129  lgslem1  27359  colinearalglem2  28940  axeuclidlem  28995  axcontlem7  29003  fusgrfisstep  29364  hvmulcan  31104  unopf1o  31948  ballotlemrv  34484  subfacp1lem3  35150  subfacp1lem5  35152  wl-sbcom2d  37515  poimirlem26  37606  areacirclem1  37668  areacirc  37673  cdleme50eq  40498  hdmapeq0  41801  hdmap11  41805  ef11d  42327  rmxdiophlem  42972  ordeldif1o  43222  nnsum3primesle9  47668
  Copyright terms: Public domain W3C validator