MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3bitr3rd Structured version   Visualization version   GIF version

Theorem 3bitr3rd 309
Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.)
Hypotheses
Ref Expression
3bitr3d.1 (𝜑 → (𝜓𝜒))
3bitr3d.2 (𝜑 → (𝜓𝜃))
3bitr3d.3 (𝜑 → (𝜒𝜏))
Assertion
Ref Expression
3bitr3rd (𝜑 → (𝜏𝜃))

Proof of Theorem 3bitr3rd
StepHypRef Expression
1 3bitr3d.3 . 2 (𝜑 → (𝜒𝜏))
2 3bitr3d.1 . . 3 (𝜑 → (𝜓𝜒))
3 3bitr3d.2 . . 3 (𝜑 → (𝜓𝜃))
42, 3bitr3d 280 . 2 (𝜑 → (𝜒𝜃))
51, 4bitr3d 280 1 (𝜑 → (𝜏𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  wdomtr  9569  ltaddsub  11687  leaddsub  11689  eqneg  11933  sqreulem  15305  brcic  17744  nmzsubg  19044  f1omvdconj  19313  dfod2  19431  odf1o2  19440  cyggenod  19751  lvecvscan  20723  znidomb  21116  mdetunilem9  22121  iccpnfcnv  24459  dvcvx  25536  cxple2  26204  wilthlem1  26569  lgslem1  26797  colinearalglem2  28162  axeuclidlem  28217  axcontlem7  28225  fusgrfisstep  28583  hvmulcan  30320  unopf1o  31164  ballotlemrv  33513  subfacp1lem3  34168  subfacp1lem5  34170  wl-sbcom2d  36421  poimirlem26  36509  areacirclem1  36571  areacirc  36576  cdleme50eq  39407  hdmapeq0  40710  hdmap11  40714  rmxdiophlem  41744  ordeldif1o  42000  nnsum3primesle9  46452  0ringdif  46634
  Copyright terms: Public domain W3C validator