MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni Structured version   Visualization version   GIF version

Theorem intssuni 4923
Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni (𝐴 ≠ ∅ → 𝐴 𝐴)

Proof of Theorem intssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.2z 4448 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
21ex 412 . . 3 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑥𝑦))
3 vex 3442 . . . 4 𝑥 ∈ V
43elint2 4906 . . 3 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
5 eluni2 4865 . . 3 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
62, 4, 53imtr4g 296 . 2 (𝐴 ≠ ∅ → (𝑥 𝐴𝑥 𝐴))
76ssrdv 3943 1 (𝐴 ≠ ∅ → 𝐴 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286   cuni 4861   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3440  df-dif 3908  df-ss 3922  df-nul 4287  df-uni 4862  df-int 4900
This theorem is referenced by:  unissint  4925  intssuni2  4926  intss2  5060  fin23lem31  10256  wunint  10628  tskint  10698  incexc  15762  incexc2  15763  subgint  19047  efgval  19614  lbsextlem3  21085  cssmre  21618  uffixfr  23826  uffix2  23827  uffixsn  23828  ssdifidllem  33403  ssmxidllem  33420  insiga  34103  dfon2lem8  35763  intidl  38008  elrfi  42667  toplatglb  48973
  Copyright terms: Public domain W3C validator