MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni Structured version   Visualization version   GIF version

Theorem intssuni 4898
Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni (𝐴 ≠ ∅ → 𝐴 𝐴)

Proof of Theorem intssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.2z 4422 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
21ex 412 . . 3 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑥𝑦))
3 vex 3426 . . . 4 𝑥 ∈ V
43elint2 4883 . . 3 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
5 eluni2 4840 . . 3 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
62, 4, 53imtr4g 295 . 2 (𝐴 ≠ ∅ → (𝑥 𝐴𝑥 𝐴))
76ssrdv 3923 1 (𝐴 ≠ ∅ → 𝐴 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   cuni 4836   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-uni 4837  df-int 4877
This theorem is referenced by:  unissint  4900  intssuni2  4901  intss2  5033  fin23lem31  10030  wunint  10402  tskint  10472  incexc  15477  incexc2  15478  subgint  18694  efgval  19238  lbsextlem3  20337  cssmre  20810  uffixfr  22982  uffix2  22983  uffixsn  22984  ssmxidllem  31543  insiga  32005  dfon2lem8  33672  intidl  36114  elrfi  40432  toplatglb  46175
  Copyright terms: Public domain W3C validator