![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intssuni | Structured version Visualization version GIF version |
Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssuni | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z 4518 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
3 | vex 3492 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 3 | elint2 4977 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
5 | eluni2 4935 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
7 | 6 | ssrdv 4014 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-uni 4932 df-int 4971 |
This theorem is referenced by: unissint 4996 intssuni2 4997 intss2 5131 fin23lem31 10412 wunint 10784 tskint 10854 incexc 15885 incexc2 15886 subgint 19190 efgval 19759 lbsextlem3 21185 cssmre 21734 uffixfr 23952 uffix2 23953 uffixsn 23954 ssdifidllem 33449 ssmxidllem 33466 insiga 34101 dfon2lem8 35754 intidl 37989 elrfi 42650 toplatglb 48673 |
Copyright terms: Public domain | W3C validator |