| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intssuni | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssuni | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4443 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
| 3 | vex 3438 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elint2 4902 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 5 | eluni2 4861 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
| 7 | 6 | ssrdv 3938 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 ∅c0 4281 ∪ cuni 4857 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3436 df-dif 3903 df-ss 3917 df-nul 4282 df-uni 4858 df-int 4896 |
| This theorem is referenced by: unissint 4920 intssuni2 4921 intss2 5054 fin23lem31 10226 wunint 10598 tskint 10668 incexc 15736 incexc2 15737 subgint 19055 efgval 19622 lbsextlem3 21090 cssmre 21623 uffixfr 23831 uffix2 23832 uffixsn 23833 ssdifidllem 33411 ssmxidllem 33428 insiga 34140 dfon2lem8 35803 intidl 38048 elrfi 42706 toplatglb 49011 |
| Copyright terms: Public domain | W3C validator |