MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intssuni Structured version   Visualization version   GIF version

Theorem intssuni 4922
Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni (𝐴 ≠ ∅ → 𝐴 𝐴)

Proof of Theorem intssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.2z 4446 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 𝑥𝑦)
21ex 412 . . 3 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥𝑦 → ∃𝑦𝐴 𝑥𝑦))
3 vex 3442 . . . 4 𝑥 ∈ V
43elint2 4906 . . 3 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
5 eluni2 4864 . . 3 (𝑥 𝐴 ↔ ∃𝑦𝐴 𝑥𝑦)
62, 4, 53imtr4g 296 . 2 (𝐴 ≠ ∅ → (𝑥 𝐴𝑥 𝐴))
76ssrdv 3937 1 (𝐴 ≠ ∅ → 𝐴 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wne 2930  wral 3049  wrex 3058  wss 3899  c0 4284   cuni 4860   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2931  df-ral 3050  df-rex 3059  df-v 3440  df-dif 3902  df-ss 3916  df-nul 4285  df-uni 4861  df-int 4900
This theorem is referenced by:  unissint  4924  intssuni2  4925  intss2  5060  fin23lem31  10244  wunint  10616  tskint  10686  incexc  15754  incexc2  15755  subgint  19073  efgval  19639  lbsextlem3  21107  cssmre  21640  uffixfr  23848  uffix2  23849  uffixsn  23850  ssdifidllem  33432  ssmxidllem  33449  insiga  34161  dfon2lem8  35843  intidl  38079  elrfi  42801  toplatglb  49115
  Copyright terms: Public domain W3C validator