| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intssuni | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssuni | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4448 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
| 3 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elint2 4906 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 5 | eluni2 4865 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
| 7 | 6 | ssrdv 3943 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 ∅c0 4286 ∪ cuni 4861 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3440 df-dif 3908 df-ss 3922 df-nul 4287 df-uni 4862 df-int 4900 |
| This theorem is referenced by: unissint 4925 intssuni2 4926 intss2 5060 fin23lem31 10256 wunint 10628 tskint 10698 incexc 15762 incexc2 15763 subgint 19047 efgval 19614 lbsextlem3 21085 cssmre 21618 uffixfr 23826 uffix2 23827 uffixsn 23828 ssdifidllem 33403 ssmxidllem 33420 insiga 34103 dfon2lem8 35763 intidl 38008 elrfi 42667 toplatglb 48973 |
| Copyright terms: Public domain | W3C validator |