| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intssuni | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssuni | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4470 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
| 3 | vex 3463 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elint2 4929 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 5 | eluni2 4887 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
| 7 | 6 | ssrdv 3964 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-uni 4884 df-int 4923 |
| This theorem is referenced by: unissint 4948 intssuni2 4949 intss2 5084 fin23lem31 10357 wunint 10729 tskint 10799 incexc 15853 incexc2 15854 subgint 19133 efgval 19698 lbsextlem3 21121 cssmre 21653 uffixfr 23861 uffix2 23862 uffixsn 23863 ssdifidllem 33471 ssmxidllem 33488 insiga 34168 dfon2lem8 35808 intidl 38053 elrfi 42717 toplatglb 48975 |
| Copyright terms: Public domain | W3C validator |