| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intssuni | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssuni | ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2z 4446 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
| 3 | vex 3442 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 3 | elint2 4906 | . . 3 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 5 | eluni2 4864 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) | |
| 6 | 2, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ≠ ∅ → (𝑥 ∈ ∩ 𝐴 → 𝑥 ∈ ∪ 𝐴)) |
| 7 | 6 | ssrdv 3937 | 1 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2930 ∀wral 3049 ∃wrex 3058 ⊆ wss 3899 ∅c0 4284 ∪ cuni 4860 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-v 3440 df-dif 3902 df-ss 3916 df-nul 4285 df-uni 4861 df-int 4900 |
| This theorem is referenced by: unissint 4924 intssuni2 4925 intss2 5060 fin23lem31 10244 wunint 10616 tskint 10686 incexc 15754 incexc2 15755 subgint 19073 efgval 19639 lbsextlem3 21107 cssmre 21640 uffixfr 23848 uffix2 23849 uffixsn 23850 ssdifidllem 33432 ssmxidllem 33449 insiga 34161 dfon2lem8 35843 intidl 38079 elrfi 42801 toplatglb 49115 |
| Copyright terms: Public domain | W3C validator |