Step | Hyp | Ref
| Expression |
1 | | df-si3 5759 |
. . 3
⊢ SI3 R = (( SI
1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1R) |
2 | 1 | eleq2i 2417 |
. 2
⊢ (⟨{A}, ⟨{B}, {C}⟩⟩ ∈ SI3 R ↔ ⟨{A}, ⟨{B}, {C}⟩⟩ ∈ (( SI 1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1R)) |
3 | | elimapw1 4945 |
. 2
⊢ (⟨{A}, ⟨{B}, {C}⟩⟩ ∈ (( SI 1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1R) ↔ ∃p ∈ R ⟨{p}, ⟨{A}, ⟨{B}, {C}⟩⟩⟩ ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
)))) |
4 | | oteltxp 5783 |
. . . . 5
⊢ (⟨{p}, ⟨{A}, ⟨{B}, {C}⟩⟩⟩ ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ (⟨{p}, {A}⟩ ∈ SI 1st ∧
⟨{p},
⟨{B},
{C}⟩⟩ ∈ ( SI (1st ∘
2nd ) ⊗ SI (2nd
∘ 2nd )))) |
5 | | vex 2863 |
. . . . . . . 8
⊢ p ∈
V |
6 | | otsnelsi3.1 |
. . . . . . . 8
⊢ A ∈
V |
7 | 5, 6 | opsnelsi 5775 |
. . . . . . 7
⊢ (⟨{p}, {A}⟩ ∈ SI 1st
↔ ⟨p, A⟩ ∈
1st ) |
8 | | df-br 4641 |
. . . . . . 7
⊢ (p1st A ↔ ⟨p, A⟩ ∈
1st ) |
9 | 7, 8 | bitr4i 243 |
. . . . . 6
⊢ (⟨{p}, {A}⟩ ∈ SI 1st
↔ p1st A) |
10 | | oteltxp 5783 |
. . . . . . 7
⊢ (⟨{p}, ⟨{B}, {C}⟩⟩ ∈ ( SI (1st ∘
2nd ) ⊗ SI (2nd
∘ 2nd )) ↔ (⟨{p}, {B}⟩ ∈ SI (1st
∘ 2nd ) ∧ ⟨{p}, {C}⟩ ∈ SI (2nd ∘
2nd ))) |
11 | | otsnelsi3.2 |
. . . . . . . . . 10
⊢ B ∈
V |
12 | 5, 11 | opsnelsi 5775 |
. . . . . . . . 9
⊢ (⟨{p}, {B}⟩ ∈ SI (1st
∘ 2nd ) ↔ ⟨p, B⟩ ∈ (1st ∘ 2nd )) |
13 | | opelco 4885 |
. . . . . . . . 9
⊢ (⟨p, B⟩ ∈ (1st ∘ 2nd ) ↔ ∃x(p2nd x ∧ x1st B)) |
14 | | opeq 4620 |
. . . . . . . . . . . . . 14
⊢ p = ⟨ Proj1 p, Proj2 p⟩ |
15 | 14 | breq1i 4647 |
. . . . . . . . . . . . 13
⊢ (p2nd x ↔ ⟨ Proj1 p, Proj2 p⟩2nd x) |
16 | 5 | proj1ex 4594 |
. . . . . . . . . . . . . 14
⊢ Proj1 p ∈ V |
17 | 5 | proj2ex 4595 |
. . . . . . . . . . . . . 14
⊢ Proj2 p ∈ V |
18 | 16, 17 | opbr2nd 5503 |
. . . . . . . . . . . . 13
⊢ (⟨ Proj1 p, Proj2 p⟩2nd
x ↔ Proj2
p = x) |
19 | | eqcom 2355 |
. . . . . . . . . . . . 13
⊢ ( Proj2 p = x ↔ x =
Proj2 p) |
20 | 15, 18, 19 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (p2nd x ↔ x =
Proj2 p) |
21 | 20 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((p2nd x ∧ x1st B) ↔ (x =
Proj2 p ∧ x1st B)) |
22 | 21 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃x(p2nd x ∧ x1st B) ↔ ∃x(x = Proj2 p ∧ x1st B)) |
23 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (x = Proj2 p → (x1st B ↔ Proj2
p1st B)) |
24 | 17, 23 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃x(x = Proj2 p ∧ x1st B) ↔ Proj2
p1st B) |
25 | 22, 24 | bitri 240 |
. . . . . . . . 9
⊢ (∃x(p2nd x ∧ x1st B) ↔ Proj2
p1st B) |
26 | 12, 13, 25 | 3bitri 262 |
. . . . . . . 8
⊢ (⟨{p}, {B}⟩ ∈ SI (1st
∘ 2nd ) ↔ Proj2 p1st B) |
27 | | otsnelsi3.3 |
. . . . . . . . . 10
⊢ C ∈
V |
28 | 5, 27 | opsnelsi 5775 |
. . . . . . . . 9
⊢ (⟨{p}, {C}⟩ ∈ SI (2nd
∘ 2nd ) ↔ ⟨p, C⟩ ∈ (2nd ∘ 2nd )) |
29 | | opelco 4885 |
. . . . . . . . 9
⊢ (⟨p, C⟩ ∈ (2nd ∘ 2nd ) ↔ ∃x(p2nd x ∧ x2nd C)) |
30 | 20 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((p2nd x ∧ x2nd C) ↔ (x =
Proj2 p ∧ x2nd C)) |
31 | 30 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃x(p2nd x ∧ x2nd C) ↔ ∃x(x = Proj2 p ∧ x2nd C)) |
32 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (x = Proj2 p → (x2nd C ↔ Proj2
p2nd C)) |
33 | 17, 32 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃x(x = Proj2 p ∧ x2nd C) ↔ Proj2
p2nd C) |
34 | 31, 33 | bitri 240 |
. . . . . . . . 9
⊢ (∃x(p2nd x ∧ x2nd C) ↔ Proj2
p2nd C) |
35 | 28, 29, 34 | 3bitri 262 |
. . . . . . . 8
⊢ (⟨{p}, {C}⟩ ∈ SI (2nd
∘ 2nd ) ↔ Proj2 p2nd C) |
36 | 26, 35 | anbi12i 678 |
. . . . . . 7
⊢ ((⟨{p}, {B}⟩ ∈ SI (1st
∘ 2nd ) ∧ ⟨{p}, {C}⟩ ∈ SI (2nd ∘
2nd )) ↔ ( Proj2 p1st B ∧ Proj2 p2nd C)) |
37 | 16, 17 | opbr2nd 5503 |
. . . . . . . 8
⊢ (⟨ Proj1 p, Proj2 p⟩2nd
⟨B,
C⟩ ↔
Proj2 p =
⟨B,
C⟩) |
38 | 14 | breq1i 4647 |
. . . . . . . 8
⊢ (p2nd ⟨B, C⟩ ↔ ⟨ Proj1 p, Proj2 p⟩2nd
⟨B,
C⟩) |
39 | 11, 27 | op1st2nd 5791 |
. . . . . . . 8
⊢ (( Proj2 p1st B ∧ Proj2 p2nd C) ↔ Proj2
p = ⟨B, C⟩) |
40 | 37, 38, 39 | 3bitr4ri 269 |
. . . . . . 7
⊢ (( Proj2 p1st B ∧ Proj2 p2nd C) ↔ p2nd ⟨B, C⟩) |
41 | 10, 36, 40 | 3bitri 262 |
. . . . . 6
⊢ (⟨{p}, ⟨{B}, {C}⟩⟩ ∈ ( SI (1st ∘
2nd ) ⊗ SI (2nd
∘ 2nd )) ↔ p2nd ⟨B, C⟩) |
42 | 9, 41 | anbi12i 678 |
. . . . 5
⊢ ((⟨{p}, {A}⟩ ∈ SI 1st
∧ ⟨{p}, ⟨{B}, {C}⟩⟩ ∈ ( SI (1st
∘ 2nd ) ⊗ SI (2nd ∘
2nd ))) ↔ (p1st
A ∧
p2nd ⟨B, C⟩)) |
43 | 11, 27 | opex 4589 |
. . . . . 6
⊢ ⟨B, C⟩ ∈ V |
44 | 6, 43 | op1st2nd 5791 |
. . . . 5
⊢ ((p1st A ∧ p2nd ⟨B, C⟩) ↔
p = ⟨A, ⟨B, C⟩⟩) |
45 | 4, 42, 44 | 3bitri 262 |
. . . 4
⊢ (⟨{p}, ⟨{A}, ⟨{B}, {C}⟩⟩⟩ ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ p = ⟨A, ⟨B, C⟩⟩) |
46 | 45 | rexbii 2640 |
. . 3
⊢ (∃p ∈ R ⟨{p}, ⟨{A}, ⟨{B}, {C}⟩⟩⟩ ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ ∃p ∈ R p = ⟨A, ⟨B, C⟩⟩) |
47 | | risset 2662 |
. . 3
⊢ (⟨A, ⟨B, C⟩⟩ ∈ R ↔ ∃p ∈ R p = ⟨A, ⟨B, C⟩⟩) |
48 | 46, 47 | bitr4i 243 |
. 2
⊢ (∃p ∈ R ⟨{p}, ⟨{A}, ⟨{B}, {C}⟩⟩⟩ ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ ⟨A, ⟨B, C⟩⟩ ∈ R) |
49 | 2, 3, 48 | 3bitri 262 |
1
⊢ (⟨{A}, ⟨{B}, {C}⟩⟩ ∈ SI3 R ↔ ⟨A, ⟨B, C⟩⟩ ∈ R) |