NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  otsnelsi3 GIF version

Theorem otsnelsi3 5806
Description: Ordered triple membership in triple singleton image. (Contributed by SF, 12-Feb-2015.)
Hypotheses
Ref Expression
otsnelsi3.1 A V
otsnelsi3.2 B V
otsnelsi3.3 C V
Assertion
Ref Expression
otsnelsi3 ({A}, {B}, {C} SI3 RA, B, C R)

Proof of Theorem otsnelsi3
Dummy variables p x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-si3 5759 . . 3 SI3 R = (( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) “ 1R)
21eleq2i 2417 . 2 ({A}, {B}, {C} SI3 R{A}, {B}, {C} (( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) “ 1R))
3 elimapw1 4945 . 2 ({A}, {B}, {C} (( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) “ 1R) ↔ p R {p}, {A}, {B}, {C} ( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))))
4 oteltxp 5783 . . . . 5 ({p}, {A}, {B}, {C} ( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) ↔ ({p}, {A} SI 1st {p}, {B}, {C} ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))))
5 vex 2863 . . . . . . . 8 p V
6 otsnelsi3.1 . . . . . . . 8 A V
75, 6opsnelsi 5775 . . . . . . 7 ({p}, {A} SI 1stp, A 1st )
8 df-br 4641 . . . . . . 7 (p1st Ap, A 1st )
97, 8bitr4i 243 . . . . . 6 ({p}, {A} SI 1stp1st A)
10 oteltxp 5783 . . . . . . 7 ({p}, {B}, {C} ( SI (1st 2nd ) ⊗ SI (2nd 2nd )) ↔ ({p}, {B} SI (1st 2nd ) {p}, {C} SI (2nd 2nd )))
11 otsnelsi3.2 . . . . . . . . . 10 B V
125, 11opsnelsi 5775 . . . . . . . . 9 ({p}, {B} SI (1st 2nd ) ↔ p, B (1st 2nd ))
13 opelco 4885 . . . . . . . . 9 (p, B (1st 2nd ) ↔ x(p2nd x x1st B))
14 opeq 4620 . . . . . . . . . . . . . 14 p = Proj1 p, Proj2 p
1514breq1i 4647 . . . . . . . . . . . . 13 (p2nd x Proj1 p, Proj2 p2nd x)
165proj1ex 4594 . . . . . . . . . . . . . 14 Proj1 p V
175proj2ex 4595 . . . . . . . . . . . . . 14 Proj2 p V
1816, 17opbr2nd 5503 . . . . . . . . . . . . 13 ( Proj1 p, Proj2 p2nd x Proj2 p = x)
19 eqcom 2355 . . . . . . . . . . . . 13 ( Proj2 p = xx = Proj2 p)
2015, 18, 193bitri 262 . . . . . . . . . . . 12 (p2nd xx = Proj2 p)
2120anbi1i 676 . . . . . . . . . . 11 ((p2nd x x1st B) ↔ (x = Proj2 p x1st B))
2221exbii 1582 . . . . . . . . . 10 (x(p2nd x x1st B) ↔ x(x = Proj2 p x1st B))
23 breq1 4643 . . . . . . . . . . 11 (x = Proj2 p → (x1st B Proj2 p1st B))
2417, 23ceqsexv 2895 . . . . . . . . . 10 (x(x = Proj2 p x1st B) ↔ Proj2 p1st B)
2522, 24bitri 240 . . . . . . . . 9 (x(p2nd x x1st B) ↔ Proj2 p1st B)
2612, 13, 253bitri 262 . . . . . . . 8 ({p}, {B} SI (1st 2nd ) ↔ Proj2 p1st B)
27 otsnelsi3.3 . . . . . . . . . 10 C V
285, 27opsnelsi 5775 . . . . . . . . 9 ({p}, {C} SI (2nd 2nd ) ↔ p, C (2nd 2nd ))
29 opelco 4885 . . . . . . . . 9 (p, C (2nd 2nd ) ↔ x(p2nd x x2nd C))
3020anbi1i 676 . . . . . . . . . . 11 ((p2nd x x2nd C) ↔ (x = Proj2 p x2nd C))
3130exbii 1582 . . . . . . . . . 10 (x(p2nd x x2nd C) ↔ x(x = Proj2 p x2nd C))
32 breq1 4643 . . . . . . . . . . 11 (x = Proj2 p → (x2nd C Proj2 p2nd C))
3317, 32ceqsexv 2895 . . . . . . . . . 10 (x(x = Proj2 p x2nd C) ↔ Proj2 p2nd C)
3431, 33bitri 240 . . . . . . . . 9 (x(p2nd x x2nd C) ↔ Proj2 p2nd C)
3528, 29, 343bitri 262 . . . . . . . 8 ({p}, {C} SI (2nd 2nd ) ↔ Proj2 p2nd C)
3626, 35anbi12i 678 . . . . . . 7 (({p}, {B} SI (1st 2nd ) {p}, {C} SI (2nd 2nd )) ↔ ( Proj2 p1st B Proj2 p2nd C))
3716, 17opbr2nd 5503 . . . . . . . 8 ( Proj1 p, Proj2 p2nd B, C Proj2 p = B, C)
3814breq1i 4647 . . . . . . . 8 (p2nd B, C Proj1 p, Proj2 p2nd B, C)
3911, 27op1st2nd 5791 . . . . . . . 8 (( Proj2 p1st B Proj2 p2nd C) ↔ Proj2 p = B, C)
4037, 38, 393bitr4ri 269 . . . . . . 7 (( Proj2 p1st B Proj2 p2nd C) ↔ p2nd B, C)
4110, 36, 403bitri 262 . . . . . 6 ({p}, {B}, {C} ( SI (1st 2nd ) ⊗ SI (2nd 2nd )) ↔ p2nd B, C)
429, 41anbi12i 678 . . . . 5 (({p}, {A} SI 1st {p}, {B}, {C} ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) ↔ (p1st A p2nd B, C))
4311, 27opex 4589 . . . . . 6 B, C V
446, 43op1st2nd 5791 . . . . 5 ((p1st A p2nd B, C) ↔ p = A, B, C)
454, 42, 443bitri 262 . . . 4 ({p}, {A}, {B}, {C} ( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) ↔ p = A, B, C)
4645rexbii 2640 . . 3 (p R {p}, {A}, {B}, {C} ( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) ↔ p R p = A, B, C)
47 risset 2662 . . 3 (A, B, C Rp R p = A, B, C)
4846, 47bitr4i 243 . 2 (p R {p}, {A}, {B}, {C} ( SI 1st ⊗ ( SI (1st 2nd ) ⊗ SI (2nd 2nd ))) ↔ A, B, C R)
492, 3, 483bitri 262 1 ({A}, {B}, {C} SI3 RA, B, C R)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  {csn 3738  1cpw1 4136  cop 4562   Proj1 cproj1 4564   Proj2 cproj2 4565   class class class wbr 4640  1st c1st 4718   SI csi 4721   ccom 4722  cima 4723  2nd c2nd 4784  ctxp 5736   SI3 csi3 5758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-co 4727  df-ima 4728  df-si 4729  df-cnv 4786  df-2nd 4798  df-txp 5737  df-si3 5759
This theorem is referenced by:  composeex  5821  addcfnex  5825  funsex  5829  crossex  5851  domfnex  5871  ranfnex  5872  transex  5911  antisymex  5913  connexex  5914  foundex  5915  extex  5916  symex  5917  mucex  6134  ovcelem1  6172  ceex  6175
  Copyright terms: Public domain W3C validator