| Step | Hyp | Ref
| Expression |
| 1 | | df-si3 5759 |
. . 3
⊢ SI3 R = (( SI
1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1R) |
| 2 | 1 | eleq2i 2417 |
. 2
⊢ (〈{A}, 〈{B}, {C}〉〉 ∈ SI3 R ↔ 〈{A}, 〈{B}, {C}〉〉 ∈ (( SI 1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1R)) |
| 3 | | elimapw1 4945 |
. 2
⊢ (〈{A}, 〈{B}, {C}〉〉 ∈ (( SI 1st ⊗ ( SI
(1st ∘ 2nd )
⊗ SI (2nd ∘ 2nd ))) “ ℘1R) ↔ ∃p ∈ R 〈{p}, 〈{A}, 〈{B}, {C}〉〉〉 ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
)))) |
| 4 | | oteltxp 5783 |
. . . . 5
⊢ (〈{p}, 〈{A}, 〈{B}, {C}〉〉〉 ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ (〈{p}, {A}〉 ∈ SI 1st ∧
〈{p},
〈{B},
{C}〉〉 ∈ ( SI (1st ∘
2nd ) ⊗ SI (2nd
∘ 2nd )))) |
| 5 | | vex 2863 |
. . . . . . . 8
⊢ p ∈
V |
| 6 | | otsnelsi3.1 |
. . . . . . . 8
⊢ A ∈
V |
| 7 | 5, 6 | opsnelsi 5775 |
. . . . . . 7
⊢ (〈{p}, {A}〉 ∈ SI 1st
↔ 〈p, A〉 ∈
1st ) |
| 8 | | df-br 4641 |
. . . . . . 7
⊢ (p1st A ↔ 〈p, A〉 ∈
1st ) |
| 9 | 7, 8 | bitr4i 243 |
. . . . . 6
⊢ (〈{p}, {A}〉 ∈ SI 1st
↔ p1st A) |
| 10 | | oteltxp 5783 |
. . . . . . 7
⊢ (〈{p}, 〈{B}, {C}〉〉 ∈ ( SI (1st ∘
2nd ) ⊗ SI (2nd
∘ 2nd )) ↔ (〈{p}, {B}〉 ∈ SI (1st
∘ 2nd ) ∧ 〈{p}, {C}〉 ∈ SI (2nd ∘
2nd ))) |
| 11 | | otsnelsi3.2 |
. . . . . . . . . 10
⊢ B ∈
V |
| 12 | 5, 11 | opsnelsi 5775 |
. . . . . . . . 9
⊢ (〈{p}, {B}〉 ∈ SI (1st
∘ 2nd ) ↔ 〈p, B〉 ∈ (1st ∘ 2nd )) |
| 13 | | opelco 4885 |
. . . . . . . . 9
⊢ (〈p, B〉 ∈ (1st ∘ 2nd ) ↔ ∃x(p2nd x ∧ x1st B)) |
| 14 | | opeq 4620 |
. . . . . . . . . . . . . 14
⊢ p = 〈 Proj1 p, Proj2 p〉 |
| 15 | 14 | breq1i 4647 |
. . . . . . . . . . . . 13
⊢ (p2nd x ↔ 〈 Proj1 p, Proj2 p〉2nd x) |
| 16 | 5 | proj1ex 4594 |
. . . . . . . . . . . . . 14
⊢ Proj1 p ∈ V |
| 17 | 5 | proj2ex 4595 |
. . . . . . . . . . . . . 14
⊢ Proj2 p ∈ V |
| 18 | 16, 17 | opbr2nd 5503 |
. . . . . . . . . . . . 13
⊢ (〈 Proj1 p, Proj2 p〉2nd
x ↔ Proj2
p = x) |
| 19 | | eqcom 2355 |
. . . . . . . . . . . . 13
⊢ ( Proj2 p = x ↔ x =
Proj2 p) |
| 20 | 15, 18, 19 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (p2nd x ↔ x =
Proj2 p) |
| 21 | 20 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((p2nd x ∧ x1st B) ↔ (x =
Proj2 p ∧ x1st B)) |
| 22 | 21 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃x(p2nd x ∧ x1st B) ↔ ∃x(x = Proj2 p ∧ x1st B)) |
| 23 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (x = Proj2 p → (x1st B ↔ Proj2
p1st B)) |
| 24 | 17, 23 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃x(x = Proj2 p ∧ x1st B) ↔ Proj2
p1st B) |
| 25 | 22, 24 | bitri 240 |
. . . . . . . . 9
⊢ (∃x(p2nd x ∧ x1st B) ↔ Proj2
p1st B) |
| 26 | 12, 13, 25 | 3bitri 262 |
. . . . . . . 8
⊢ (〈{p}, {B}〉 ∈ SI (1st
∘ 2nd ) ↔ Proj2 p1st B) |
| 27 | | otsnelsi3.3 |
. . . . . . . . . 10
⊢ C ∈
V |
| 28 | 5, 27 | opsnelsi 5775 |
. . . . . . . . 9
⊢ (〈{p}, {C}〉 ∈ SI (2nd
∘ 2nd ) ↔ 〈p, C〉 ∈ (2nd ∘ 2nd )) |
| 29 | | opelco 4885 |
. . . . . . . . 9
⊢ (〈p, C〉 ∈ (2nd ∘ 2nd ) ↔ ∃x(p2nd x ∧ x2nd C)) |
| 30 | 20 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((p2nd x ∧ x2nd C) ↔ (x =
Proj2 p ∧ x2nd C)) |
| 31 | 30 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃x(p2nd x ∧ x2nd C) ↔ ∃x(x = Proj2 p ∧ x2nd C)) |
| 32 | | breq1 4643 |
. . . . . . . . . . 11
⊢ (x = Proj2 p → (x2nd C ↔ Proj2
p2nd C)) |
| 33 | 17, 32 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃x(x = Proj2 p ∧ x2nd C) ↔ Proj2
p2nd C) |
| 34 | 31, 33 | bitri 240 |
. . . . . . . . 9
⊢ (∃x(p2nd x ∧ x2nd C) ↔ Proj2
p2nd C) |
| 35 | 28, 29, 34 | 3bitri 262 |
. . . . . . . 8
⊢ (〈{p}, {C}〉 ∈ SI (2nd
∘ 2nd ) ↔ Proj2 p2nd C) |
| 36 | 26, 35 | anbi12i 678 |
. . . . . . 7
⊢ ((〈{p}, {B}〉 ∈ SI (1st
∘ 2nd ) ∧ 〈{p}, {C}〉 ∈ SI (2nd ∘
2nd )) ↔ ( Proj2 p1st B ∧ Proj2 p2nd C)) |
| 37 | 16, 17 | opbr2nd 5503 |
. . . . . . . 8
⊢ (〈 Proj1 p, Proj2 p〉2nd
〈B,
C〉 ↔
Proj2 p =
〈B,
C〉) |
| 38 | 14 | breq1i 4647 |
. . . . . . . 8
⊢ (p2nd 〈B, C〉 ↔ 〈 Proj1 p, Proj2 p〉2nd
〈B,
C〉) |
| 39 | 11, 27 | op1st2nd 5791 |
. . . . . . . 8
⊢ (( Proj2 p1st B ∧ Proj2 p2nd C) ↔ Proj2
p = 〈B, C〉) |
| 40 | 37, 38, 39 | 3bitr4ri 269 |
. . . . . . 7
⊢ (( Proj2 p1st B ∧ Proj2 p2nd C) ↔ p2nd 〈B, C〉) |
| 41 | 10, 36, 40 | 3bitri 262 |
. . . . . 6
⊢ (〈{p}, 〈{B}, {C}〉〉 ∈ ( SI (1st ∘
2nd ) ⊗ SI (2nd
∘ 2nd )) ↔ p2nd 〈B, C〉) |
| 42 | 9, 41 | anbi12i 678 |
. . . . 5
⊢ ((〈{p}, {A}〉 ∈ SI 1st
∧ 〈{p}, 〈{B}, {C}〉〉 ∈ ( SI (1st
∘ 2nd ) ⊗ SI (2nd ∘
2nd ))) ↔ (p1st
A ∧
p2nd 〈B, C〉)) |
| 43 | 11, 27 | opex 4589 |
. . . . . 6
⊢ 〈B, C〉 ∈ V |
| 44 | 6, 43 | op1st2nd 5791 |
. . . . 5
⊢ ((p1st A ∧ p2nd 〈B, C〉) ↔
p = 〈A, 〈B, C〉〉) |
| 45 | 4, 42, 44 | 3bitri 262 |
. . . 4
⊢ (〈{p}, 〈{A}, 〈{B}, {C}〉〉〉 ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ p = 〈A, 〈B, C〉〉) |
| 46 | 45 | rexbii 2640 |
. . 3
⊢ (∃p ∈ R 〈{p}, 〈{A}, 〈{B}, {C}〉〉〉 ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ ∃p ∈ R p = 〈A, 〈B, C〉〉) |
| 47 | | risset 2662 |
. . 3
⊢ (〈A, 〈B, C〉〉 ∈ R ↔ ∃p ∈ R p = 〈A, 〈B, C〉〉) |
| 48 | 46, 47 | bitr4i 243 |
. 2
⊢ (∃p ∈ R 〈{p}, 〈{A}, 〈{B}, {C}〉〉〉 ∈ ( SI 1st
⊗ ( SI (1st ∘ 2nd ) ⊗
SI (2nd ∘ 2nd
))) ↔ 〈A, 〈B, C〉〉 ∈ R) |
| 49 | 2, 3, 48 | 3bitri 262 |
1
⊢ (〈{A}, 〈{B}, {C}〉〉 ∈ SI3 R ↔ 〈A, 〈B, C〉〉 ∈ R) |