Step | Hyp | Ref
| Expression |
1 | | vex 2862 |
. . . . . 6
⊢ x ∈
V |
2 | | vex 2862 |
. . . . . 6
⊢ y ∈
V |
3 | 1, 2 | opex 4588 |
. . . . 5
⊢ 〈x, y〉 ∈ V |
4 | 3 | eluni1 4173 |
. . . 4
⊢ (〈x, y〉 ∈ ⋃1((( SI
◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) ↔ {〈x, y〉} ∈ ((( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g)) |
5 | | elima 4754 |
. . . . 5
⊢ ({〈x, y〉} ∈ ((( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) ↔ ∃p ∈ g p(( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )){〈x, y〉}) |
6 | | brin 4693 |
. . . . . . 7
⊢ (p(( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )){〈x, y〉} ↔
(p( SI ◡1st ∘ 1st ){〈x, y〉} ∧ p( SI ◡2nd ∘ 2nd ){〈x, y〉})) |
7 | | brco 4883 |
. . . . . . . . 9
⊢ (p( SI ◡1st ∘ 1st ){〈x, y〉} ↔ ∃a(p1st a ∧ a SI ◡1st {〈x, y〉})) |
8 | | ancom 437 |
. . . . . . . . . . 11
⊢ ((p1st a ∧ a SI ◡1st {〈x, y〉}) ↔
(a SI ◡1st {〈x, y〉} ∧ p1st a)) |
9 | 3 | brsnsi2 5776 |
. . . . . . . . . . . . 13
⊢ (a SI ◡1st {〈x, y〉} ↔ ∃b(a = {b} ∧ b◡1st 〈x, y〉)) |
10 | | ancom 437 |
. . . . . . . . . . . . . . 15
⊢ ((a = {b} ∧ b◡1st 〈x, y〉) ↔
(b◡1st 〈x, y〉 ∧ a = {b})) |
11 | | brcnv 4892 |
. . . . . . . . . . . . . . . . 17
⊢ (b◡1st 〈x, y〉 ↔ 〈x, y〉1st
b) |
12 | 1, 2 | opbr1st 5501 |
. . . . . . . . . . . . . . . . 17
⊢ (〈x, y〉1st
b ↔ x = b) |
13 | | equcom 1680 |
. . . . . . . . . . . . . . . . 17
⊢ (x = b ↔
b = x) |
14 | 11, 12, 13 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (b◡1st 〈x, y〉 ↔ b = x) |
15 | 14 | anbi1i 676 |
. . . . . . . . . . . . . . 15
⊢ ((b◡1st 〈x, y〉 ∧ a = {b}) ↔ (b =
x ∧
a = {b})) |
16 | 10, 15 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ ((a = {b} ∧ b◡1st 〈x, y〉) ↔
(b = x
∧ a =
{b})) |
17 | 16 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃b(a = {b} ∧ b◡1st 〈x, y〉) ↔ ∃b(b = x ∧ a = {b})) |
18 | | sneq 3744 |
. . . . . . . . . . . . . . 15
⊢ (b = x →
{b} = {x}) |
19 | 18 | eqeq2d 2364 |
. . . . . . . . . . . . . 14
⊢ (b = x →
(a = {b} ↔ a =
{x})) |
20 | 1, 19 | ceqsexv 2894 |
. . . . . . . . . . . . 13
⊢ (∃b(b = x ∧ a = {b}) ↔ a =
{x}) |
21 | 9, 17, 20 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (a SI ◡1st {〈x, y〉} ↔
a = {x}) |
22 | 21 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((a SI ◡1st {〈x, y〉} ∧ p1st a) ↔ (a =
{x} ∧
p1st a)) |
23 | 8, 22 | bitri 240 |
. . . . . . . . . 10
⊢ ((p1st a ∧ a SI ◡1st {〈x, y〉}) ↔
(a = {x} ∧ p1st a)) |
24 | 23 | exbii 1582 |
. . . . . . . . 9
⊢ (∃a(p1st a ∧ a SI ◡1st {〈x, y〉}) ↔ ∃a(a = {x} ∧ p1st a)) |
25 | | snex 4111 |
. . . . . . . . . 10
⊢ {x} ∈
V |
26 | | breq2 4643 |
. . . . . . . . . 10
⊢ (a = {x} →
(p1st a ↔ p1st {x})) |
27 | 25, 26 | ceqsexv 2894 |
. . . . . . . . 9
⊢ (∃a(a = {x} ∧ p1st a) ↔ p1st {x}) |
28 | 7, 24, 27 | 3bitri 262 |
. . . . . . . 8
⊢ (p( SI ◡1st ∘ 1st ){〈x, y〉} ↔
p1st {x}) |
29 | | brco 4883 |
. . . . . . . . 9
⊢ (p( SI ◡2nd ∘ 2nd ){〈x, y〉} ↔ ∃a(p2nd a ∧ a SI ◡2nd {〈x, y〉})) |
30 | 3 | brsnsi2 5776 |
. . . . . . . . . . . . 13
⊢ (a SI ◡2nd {〈x, y〉} ↔ ∃b(a = {b} ∧ b◡2nd 〈x, y〉)) |
31 | | brcnv 4892 |
. . . . . . . . . . . . . . . . 17
⊢ (b◡2nd 〈x, y〉 ↔ 〈x, y〉2nd
b) |
32 | 1, 2 | opbr2nd 5502 |
. . . . . . . . . . . . . . . . 17
⊢ (〈x, y〉2nd
b ↔ y = b) |
33 | | equcom 1680 |
. . . . . . . . . . . . . . . . 17
⊢ (y = b ↔
b = y) |
34 | 31, 32, 33 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (b◡2nd 〈x, y〉 ↔ b = y) |
35 | 34 | anbi2i 675 |
. . . . . . . . . . . . . . 15
⊢ ((a = {b} ∧ b◡2nd 〈x, y〉) ↔
(a = {b} ∧ b = y)) |
36 | | ancom 437 |
. . . . . . . . . . . . . . 15
⊢ ((a = {b} ∧ b = y) ↔ (b =
y ∧
a = {b})) |
37 | 35, 36 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ ((a = {b} ∧ b◡2nd 〈x, y〉) ↔
(b = y
∧ a =
{b})) |
38 | 37 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃b(a = {b} ∧ b◡2nd 〈x, y〉) ↔ ∃b(b = y ∧ a = {b})) |
39 | | sneq 3744 |
. . . . . . . . . . . . . . 15
⊢ (b = y →
{b} = {y}) |
40 | 39 | eqeq2d 2364 |
. . . . . . . . . . . . . 14
⊢ (b = y →
(a = {b} ↔ a =
{y})) |
41 | 2, 40 | ceqsexv 2894 |
. . . . . . . . . . . . 13
⊢ (∃b(b = y ∧ a = {b}) ↔ a =
{y}) |
42 | 30, 38, 41 | 3bitri 262 |
. . . . . . . . . . . 12
⊢ (a SI ◡2nd {〈x, y〉} ↔
a = {y}) |
43 | 42 | anbi2i 675 |
. . . . . . . . . . 11
⊢ ((p2nd a ∧ a SI ◡2nd {〈x, y〉}) ↔
(p2nd a ∧ a = {y})) |
44 | | ancom 437 |
. . . . . . . . . . 11
⊢ ((p2nd a ∧ a = {y}) ↔
(a = {y} ∧ p2nd a)) |
45 | 43, 44 | bitri 240 |
. . . . . . . . . 10
⊢ ((p2nd a ∧ a SI ◡2nd {〈x, y〉}) ↔
(a = {y} ∧ p2nd a)) |
46 | 45 | exbii 1582 |
. . . . . . . . 9
⊢ (∃a(p2nd a ∧ a SI ◡2nd {〈x, y〉}) ↔ ∃a(a = {y} ∧ p2nd a)) |
47 | | snex 4111 |
. . . . . . . . . 10
⊢ {y} ∈
V |
48 | | breq2 4643 |
. . . . . . . . . 10
⊢ (a = {y} →
(p2nd a ↔ p2nd {y})) |
49 | 47, 48 | ceqsexv 2894 |
. . . . . . . . 9
⊢ (∃a(a = {y} ∧ p2nd a) ↔ p2nd {y}) |
50 | 29, 46, 49 | 3bitri 262 |
. . . . . . . 8
⊢ (p( SI ◡2nd ∘ 2nd ){〈x, y〉} ↔
p2nd {y}) |
51 | 28, 50 | anbi12i 678 |
. . . . . . 7
⊢ ((p( SI ◡1st ∘ 1st ){〈x, y〉} ∧ p( SI ◡2nd ∘ 2nd ){〈x, y〉}) ↔
(p1st {x} ∧ p2nd {y})) |
52 | 25, 47 | op1st2nd 5790 |
. . . . . . 7
⊢ ((p1st {x} ∧ p2nd {y}) ↔ p =
〈{x},
{y}〉) |
53 | 6, 51, 52 | 3bitri 262 |
. . . . . 6
⊢ (p(( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )){〈x, y〉} ↔
p = 〈{x}, {y}〉) |
54 | 53 | rexbii 2639 |
. . . . 5
⊢ (∃p ∈ g p(( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )){〈x, y〉} ↔ ∃p ∈ g p = 〈{x}, {y}〉) |
55 | 5, 54 | bitri 240 |
. . . 4
⊢ ({〈x, y〉} ∈ ((( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) ↔ ∃p ∈ g p = 〈{x}, {y}〉) |
56 | | df-br 4640 |
. . . . 5
⊢ ({x}g{y} ↔ 〈{x}, {y}〉 ∈ g) |
57 | | risset 2661 |
. . . . 5
⊢ (〈{x}, {y}〉 ∈ g ↔
∃p ∈ g p = 〈{x}, {y}〉) |
58 | 56, 57 | bitr2i 241 |
. . . 4
⊢ (∃p ∈ g p = 〈{x}, {y}〉 ↔ {x}g{y}) |
59 | 4, 55, 58 | 3bitri 262 |
. . 3
⊢ (〈x, y〉 ∈ ⋃1((( SI
◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) ↔ {x}g{y}) |
60 | 59 | opabbi2i 4866 |
. 2
⊢
⋃1((( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) = {〈x, y〉 ∣ {x}g{y}} |
61 | | 1stex 4739 |
. . . . . . . 8
⊢ 1st
∈ V |
62 | 61 | cnvex 5102 |
. . . . . . 7
⊢ ◡1st ∈ V |
63 | 62 | siex 4753 |
. . . . . 6
⊢ SI ◡1st ∈ V |
64 | 63, 61 | coex 4750 |
. . . . 5
⊢ ( SI ◡1st ∘ 1st ) ∈ V |
65 | | 2ndex 5112 |
. . . . . . . 8
⊢ 2nd
∈ V |
66 | 65 | cnvex 5102 |
. . . . . . 7
⊢ ◡2nd ∈ V |
67 | 66 | siex 4753 |
. . . . . 6
⊢ SI ◡2nd ∈ V |
68 | 67, 65 | coex 4750 |
. . . . 5
⊢ ( SI ◡2nd ∘ 2nd ) ∈ V |
69 | 64, 68 | inex 4105 |
. . . 4
⊢ (( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) ∈ V |
70 | | vex 2862 |
. . . 4
⊢ g ∈
V |
71 | 69, 70 | imaex 4747 |
. . 3
⊢ ((( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) ∈
V |
72 | 71 | uni1ex 4293 |
. 2
⊢
⋃1((( SI ◡1st ∘ 1st ) ∩ (
SI ◡2nd ∘ 2nd )) “ g) ∈
V |
73 | 60, 72 | eqeltrri 2424 |
1
⊢ {〈x, y〉 ∣ {x}g{y}} ∈ V |