NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  releqel GIF version

Theorem releqel 5808
Description: Lemma to turn a membership condition into an equality condition. (Contributed by SF, 9-Mar-2015.)
Hypotheses
Ref Expression
releqel.1 T V
releqel.2 ({y}, T Ry A)
Assertion
Ref Expression
releqel (x, T ∼ (( Ins3 S Ins2 R) “ 1c) ↔ x = A)
Distinct variable groups:   y,A   y,R   y,T   x,y
Allowed substitution hints:   A(x)   R(x)   T(x)

Proof of Theorem releqel
StepHypRef Expression
1 elima1c 4948 . . . 4 (x, T (( Ins3 S Ins2 R) “ 1c) ↔ y{y}, x, T ( Ins3 S Ins2 R))
2 elsymdif 3224 . . . . . 6 ({y}, x, T ( Ins3 S Ins2 R) ↔ ¬ ({y}, x, T Ins3 S {y}, x, T Ins2 R))
3 releqel.1 . . . . . . . . 9 T V
43otelins3 5793 . . . . . . . 8 ({y}, x, T Ins3 S {y}, x S )
5 vex 2863 . . . . . . . . 9 y V
6 vex 2863 . . . . . . . . 9 x V
75, 6opelssetsn 4761 . . . . . . . 8 ({y}, x S y x)
84, 7bitri 240 . . . . . . 7 ({y}, x, T Ins3 S y x)
96otelins2 5792 . . . . . . . 8 ({y}, x, T Ins2 R{y}, T R)
10 releqel.2 . . . . . . . 8 ({y}, T Ry A)
119, 10bitri 240 . . . . . . 7 ({y}, x, T Ins2 Ry A)
128, 11bibi12i 306 . . . . . 6 (({y}, x, T Ins3 S {y}, x, T Ins2 R) ↔ (y xy A))
132, 12xchbinx 301 . . . . 5 ({y}, x, T ( Ins3 S Ins2 R) ↔ ¬ (y xy A))
1413exbii 1582 . . . 4 (y{y}, x, T ( Ins3 S Ins2 R) ↔ y ¬ (y xy A))
15 exnal 1574 . . . 4 (y ¬ (y xy A) ↔ ¬ y(y xy A))
161, 14, 153bitrri 263 . . 3 y(y xy A) ↔ x, T (( Ins3 S Ins2 R) “ 1c))
1716con1bii 321 . 2 x, T (( Ins3 S Ins2 R) “ 1c) ↔ y(y xy A))
186, 3opex 4589 . . 3 x, T V
1918elcompl 3226 . 2 (x, T ∼ (( Ins3 S Ins2 R) “ 1c) ↔ ¬ x, T (( Ins3 S Ins2 R) “ 1c))
20 dfcleq 2347 . 2 (x = Ay(y xy A))
2117, 19, 203bitr4i 268 1 (x, T ∼ (( Ins3 S Ins2 R) “ 1c) ↔ x = A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wal 1540  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  ccompl 3206  csymdif 3210  {csn 3738  1cc1c 4135  cop 4562   S csset 4720  cima 4723   Ins2 cins2 5750   Ins3 cins3 5752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-sset 4726  df-co 4727  df-ima 4728  df-cnv 4786  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753
This theorem is referenced by:  releqmpt  5809  ceex  6175  nmembers1lem1  6269  nchoicelem10  6299
  Copyright terms: Public domain W3C validator