New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > releqel | GIF version |
Description: Lemma to turn a membership condition into an equality condition. (Contributed by SF, 9-Mar-2015.) |
Ref | Expression |
---|---|
releqel.1 | ⊢ T ∈ V |
releqel.2 | ⊢ (〈{y}, T〉 ∈ R ↔ y ∈ A) |
Ref | Expression |
---|---|
releqel | ⊢ (〈x, T〉 ∈ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ x = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elima1c 4948 | . . . 4 ⊢ (〈x, T〉 ∈ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ ∃y〈{y}, 〈x, T〉〉 ∈ ( Ins3 S ⊕ Ins2 R)) | |
2 | elsymdif 3224 | . . . . . 6 ⊢ (〈{y}, 〈x, T〉〉 ∈ ( Ins3 S ⊕ Ins2 R) ↔ ¬ (〈{y}, 〈x, T〉〉 ∈ Ins3 S ↔ 〈{y}, 〈x, T〉〉 ∈ Ins2 R)) | |
3 | releqel.1 | . . . . . . . . 9 ⊢ T ∈ V | |
4 | 3 | otelins3 5793 | . . . . . . . 8 ⊢ (〈{y}, 〈x, T〉〉 ∈ Ins3 S ↔ 〈{y}, x〉 ∈ S ) |
5 | vex 2863 | . . . . . . . . 9 ⊢ y ∈ V | |
6 | vex 2863 | . . . . . . . . 9 ⊢ x ∈ V | |
7 | 5, 6 | opelssetsn 4761 | . . . . . . . 8 ⊢ (〈{y}, x〉 ∈ S ↔ y ∈ x) |
8 | 4, 7 | bitri 240 | . . . . . . 7 ⊢ (〈{y}, 〈x, T〉〉 ∈ Ins3 S ↔ y ∈ x) |
9 | 6 | otelins2 5792 | . . . . . . . 8 ⊢ (〈{y}, 〈x, T〉〉 ∈ Ins2 R ↔ 〈{y}, T〉 ∈ R) |
10 | releqel.2 | . . . . . . . 8 ⊢ (〈{y}, T〉 ∈ R ↔ y ∈ A) | |
11 | 9, 10 | bitri 240 | . . . . . . 7 ⊢ (〈{y}, 〈x, T〉〉 ∈ Ins2 R ↔ y ∈ A) |
12 | 8, 11 | bibi12i 306 | . . . . . 6 ⊢ ((〈{y}, 〈x, T〉〉 ∈ Ins3 S ↔ 〈{y}, 〈x, T〉〉 ∈ Ins2 R) ↔ (y ∈ x ↔ y ∈ A)) |
13 | 2, 12 | xchbinx 301 | . . . . 5 ⊢ (〈{y}, 〈x, T〉〉 ∈ ( Ins3 S ⊕ Ins2 R) ↔ ¬ (y ∈ x ↔ y ∈ A)) |
14 | 13 | exbii 1582 | . . . 4 ⊢ (∃y〈{y}, 〈x, T〉〉 ∈ ( Ins3 S ⊕ Ins2 R) ↔ ∃y ¬ (y ∈ x ↔ y ∈ A)) |
15 | exnal 1574 | . . . 4 ⊢ (∃y ¬ (y ∈ x ↔ y ∈ A) ↔ ¬ ∀y(y ∈ x ↔ y ∈ A)) | |
16 | 1, 14, 15 | 3bitrri 263 | . . 3 ⊢ (¬ ∀y(y ∈ x ↔ y ∈ A) ↔ 〈x, T〉 ∈ (( Ins3 S ⊕ Ins2 R) “ 1c)) |
17 | 16 | con1bii 321 | . 2 ⊢ (¬ 〈x, T〉 ∈ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ ∀y(y ∈ x ↔ y ∈ A)) |
18 | 6, 3 | opex 4589 | . . 3 ⊢ 〈x, T〉 ∈ V |
19 | 18 | elcompl 3226 | . 2 ⊢ (〈x, T〉 ∈ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ ¬ 〈x, T〉 ∈ (( Ins3 S ⊕ Ins2 R) “ 1c)) |
20 | dfcleq 2347 | . 2 ⊢ (x = A ↔ ∀y(y ∈ x ↔ y ∈ A)) | |
21 | 17, 19, 20 | 3bitr4i 268 | 1 ⊢ (〈x, T〉 ∈ ∼ (( Ins3 S ⊕ Ins2 R) “ 1c) ↔ x = A) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∼ ccompl 3206 ⊕ csymdif 3210 {csn 3738 1cc1c 4135 〈cop 4562 S csset 4720 “ cima 4723 Ins2 cins2 5750 Ins3 cins3 5752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-sset 4726 df-co 4727 df-ima 4728 df-cnv 4786 df-2nd 4798 df-txp 5737 df-ins2 5751 df-ins3 5753 |
This theorem is referenced by: releqmpt 5809 ceex 6175 nmembers1lem1 6269 nchoicelem10 6299 |
Copyright terms: Public domain | W3C validator |