New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dmsnopss | GIF version |
Description: The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on B). (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
dmsnopss | ⊢ dom {〈A, B〉} ⊆ {A} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmsnopg 5066 | . . 3 ⊢ (B ∈ V → dom {〈A, B〉} = {A}) | |
2 | eqimss 3323 | . . 3 ⊢ (dom {〈A, B〉} = {A} → dom {〈A, B〉} ⊆ {A}) | |
3 | 1, 2 | syl 15 | . 2 ⊢ (B ∈ V → dom {〈A, B〉} ⊆ {A}) |
4 | opexb 4603 | . . . . . . . 8 ⊢ (〈A, B〉 ∈ V ↔ (A ∈ V ∧ B ∈ V)) | |
5 | 4 | simprbi 450 | . . . . . . 7 ⊢ (〈A, B〉 ∈ V → B ∈ V) |
6 | 5 | con3i 127 | . . . . . 6 ⊢ (¬ B ∈ V → ¬ 〈A, B〉 ∈ V) |
7 | snprc 3788 | . . . . . 6 ⊢ (¬ 〈A, B〉 ∈ V ↔ {〈A, B〉} = ∅) | |
8 | 6, 7 | sylib 188 | . . . . 5 ⊢ (¬ B ∈ V → {〈A, B〉} = ∅) |
9 | 8 | dmeqd 4909 | . . . 4 ⊢ (¬ B ∈ V → dom {〈A, B〉} = dom ∅) |
10 | dm0 4918 | . . . 4 ⊢ dom ∅ = ∅ | |
11 | 9, 10 | syl6eq 2401 | . . 3 ⊢ (¬ B ∈ V → dom {〈A, B〉} = ∅) |
12 | 0ss 3579 | . . 3 ⊢ ∅ ⊆ {A} | |
13 | 11, 12 | syl6eqss 3321 | . 2 ⊢ (¬ B ∈ V → dom {〈A, B〉} ⊆ {A}) |
14 | 3, 13 | pm2.61i 156 | 1 ⊢ dom {〈A, B〉} ⊆ {A} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ⊆ wss 3257 ∅c0 3550 {csn 3737 〈cop 4561 dom cdm 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-ima 4727 df-cnv 4785 df-rn 4786 df-dm 4787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |