New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fvmptss2 | GIF version |
Description: A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.) |
Ref | Expression |
---|---|
fvmptn.1 | ⊢ (x = D → B = C) |
fvmptn.2 | ⊢ F = (x ∈ A ↦ B) |
Ref | Expression |
---|---|
fvmptss2 | ⊢ (F ‘D) ⊆ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptn.1 | . . . . 5 ⊢ (x = D → B = C) | |
2 | 1 | eleq1d 2419 | . . . 4 ⊢ (x = D → (B ∈ V ↔ C ∈ V)) |
3 | fvmptn.2 | . . . . 5 ⊢ F = (x ∈ A ↦ B) | |
4 | 3 | dmmpt 5683 | . . . 4 ⊢ dom F = {x ∈ A ∣ B ∈ V} |
5 | 2, 4 | elrab2 2996 | . . 3 ⊢ (D ∈ dom F ↔ (D ∈ A ∧ C ∈ V)) |
6 | 1, 3 | fvmptg 5698 | . . . 4 ⊢ ((D ∈ A ∧ C ∈ V) → (F ‘D) = C) |
7 | eqimss 3323 | . . . 4 ⊢ ((F ‘D) = C → (F ‘D) ⊆ C) | |
8 | 6, 7 | syl 15 | . . 3 ⊢ ((D ∈ A ∧ C ∈ V) → (F ‘D) ⊆ C) |
9 | 5, 8 | sylbi 187 | . 2 ⊢ (D ∈ dom F → (F ‘D) ⊆ C) |
10 | ndmfv 5349 | . . 3 ⊢ (¬ D ∈ dom F → (F ‘D) = ∅) | |
11 | 0ss 3579 | . . . 4 ⊢ ∅ ⊆ C | |
12 | 11 | a1i 10 | . . 3 ⊢ (¬ D ∈ dom F → ∅ ⊆ C) |
13 | 10, 12 | eqsstrd 3305 | . 2 ⊢ (¬ D ∈ dom F → (F ‘D) ⊆ C) |
14 | 9, 13 | pm2.61i 156 | 1 ⊢ (F ‘D) ⊆ C |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ⊆ wss 3257 ∅c0 3550 dom cdm 4772 ‘cfv 4781 ↦ cmpt 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fv 4795 df-mpt 5652 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |