| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unen | GIF version | ||
| Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by set.mm contributors, 11-Jun-1998.) | 
| Ref | Expression | 
|---|---|
| unen | ⊢ (((A ≈ B ∧ C ≈ D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (A ∪ C) ≈ (B ∪ D)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1oun 5305 | . . . . . 6 ⊢ (((f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (f ∪ g):(A ∪ C)–1-1-onto→(B ∪ D)) | |
| 2 | vex 2863 | . . . . . . . 8 ⊢ f ∈ V | |
| 3 | vex 2863 | . . . . . . . 8 ⊢ g ∈ V | |
| 4 | 2, 3 | unex 4107 | . . . . . . 7 ⊢ (f ∪ g) ∈ V | 
| 5 | f1oeq1 5282 | . . . . . . 7 ⊢ (h = (f ∪ g) → (h:(A ∪ C)–1-1-onto→(B ∪ D) ↔ (f ∪ g):(A ∪ C)–1-1-onto→(B ∪ D))) | |
| 6 | 4, 5 | spcev 2947 | . . . . . 6 ⊢ ((f ∪ g):(A ∪ C)–1-1-onto→(B ∪ D) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) | 
| 7 | 1, 6 | syl 15 | . . . . 5 ⊢ (((f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) | 
| 8 | 7 | ex 423 | . . . 4 ⊢ ((f:A–1-1-onto→B ∧ g:C–1-1-onto→D) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D))) | 
| 9 | 8 | exlimivv 1635 | . . 3 ⊢ (∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D))) | 
| 10 | 9 | imp 418 | . 2 ⊢ ((∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) | 
| 11 | bren 6031 | . . . . 5 ⊢ (A ≈ B ↔ ∃f f:A–1-1-onto→B) | |
| 12 | bren 6031 | . . . . 5 ⊢ (C ≈ D ↔ ∃g g:C–1-1-onto→D) | |
| 13 | 11, 12 | anbi12i 678 | . . . 4 ⊢ ((A ≈ B ∧ C ≈ D) ↔ (∃f f:A–1-1-onto→B ∧ ∃g g:C–1-1-onto→D)) | 
| 14 | eeanv 1913 | . . . 4 ⊢ (∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ↔ (∃f f:A–1-1-onto→B ∧ ∃g g:C–1-1-onto→D)) | |
| 15 | 13, 14 | bitr4i 243 | . . 3 ⊢ ((A ≈ B ∧ C ≈ D) ↔ ∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D)) | 
| 16 | 15 | anbi1i 676 | . 2 ⊢ (((A ≈ B ∧ C ≈ D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) ↔ (∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅))) | 
| 17 | bren 6031 | . 2 ⊢ ((A ∪ C) ≈ (B ∪ D) ↔ ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) | |
| 18 | 10, 16, 17 | 3imtr4i 257 | 1 ⊢ (((A ≈ B ∧ C ≈ D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (A ∪ C) ≈ (B ∪ D)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 class class class wbr 4640 –1-1-onto→wf1o 4781 ≈ cen 6029 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-swap 4725 df-co 4727 df-ima 4728 df-id 4768 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-en 6030 | 
| This theorem is referenced by: enadj 6061 ncdisjun 6137 sbthlem1 6204 | 
| Copyright terms: Public domain | W3C validator |