![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > unen | GIF version |
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by set.mm contributors, 11-Jun-1998.) |
Ref | Expression |
---|---|
unen | ⊢ (((A ≈ B ∧ C ≈ D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (A ∪ C) ≈ (B ∪ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oun 5304 | . . . . . 6 ⊢ (((f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (f ∪ g):(A ∪ C)–1-1-onto→(B ∪ D)) | |
2 | vex 2862 | . . . . . . . 8 ⊢ f ∈ V | |
3 | vex 2862 | . . . . . . . 8 ⊢ g ∈ V | |
4 | 2, 3 | unex 4106 | . . . . . . 7 ⊢ (f ∪ g) ∈ V |
5 | f1oeq1 5281 | . . . . . . 7 ⊢ (h = (f ∪ g) → (h:(A ∪ C)–1-1-onto→(B ∪ D) ↔ (f ∪ g):(A ∪ C)–1-1-onto→(B ∪ D))) | |
6 | 4, 5 | spcev 2946 | . . . . . 6 ⊢ ((f ∪ g):(A ∪ C)–1-1-onto→(B ∪ D) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) |
7 | 1, 6 | syl 15 | . . . . 5 ⊢ (((f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) |
8 | 7 | ex 423 | . . . 4 ⊢ ((f:A–1-1-onto→B ∧ g:C–1-1-onto→D) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D))) |
9 | 8 | exlimivv 1635 | . . 3 ⊢ (∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) → (((A ∩ C) = ∅ ∧ (B ∩ D) = ∅) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D))) |
10 | 9 | imp 418 | . 2 ⊢ ((∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) |
11 | bren 6030 | . . . . 5 ⊢ (A ≈ B ↔ ∃f f:A–1-1-onto→B) | |
12 | bren 6030 | . . . . 5 ⊢ (C ≈ D ↔ ∃g g:C–1-1-onto→D) | |
13 | 11, 12 | anbi12i 678 | . . . 4 ⊢ ((A ≈ B ∧ C ≈ D) ↔ (∃f f:A–1-1-onto→B ∧ ∃g g:C–1-1-onto→D)) |
14 | eeanv 1913 | . . . 4 ⊢ (∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ↔ (∃f f:A–1-1-onto→B ∧ ∃g g:C–1-1-onto→D)) | |
15 | 13, 14 | bitr4i 243 | . . 3 ⊢ ((A ≈ B ∧ C ≈ D) ↔ ∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D)) |
16 | 15 | anbi1i 676 | . 2 ⊢ (((A ≈ B ∧ C ≈ D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) ↔ (∃f∃g(f:A–1-1-onto→B ∧ g:C–1-1-onto→D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅))) |
17 | bren 6030 | . 2 ⊢ ((A ∪ C) ≈ (B ∪ D) ↔ ∃h h:(A ∪ C)–1-1-onto→(B ∪ D)) | |
18 | 10, 16, 17 | 3imtr4i 257 | 1 ⊢ (((A ≈ B ∧ C ≈ D) ∧ ((A ∩ C) = ∅ ∧ (B ∩ D) = ∅)) → (A ∪ C) ≈ (B ∪ D)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 = wceq 1642 ∪ cun 3207 ∩ cin 3208 ∅c0 3550 class class class wbr 4639 –1-1-onto→wf1o 4780 ≈ cen 6028 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-swap 4724 df-co 4726 df-ima 4727 df-id 4767 df-cnv 4785 df-rn 4786 df-dm 4787 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-en 6029 |
This theorem is referenced by: enadj 6060 ncdisjun 6136 sbthlem1 6203 |
Copyright terms: Public domain | W3C validator |