![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sspw12 | GIF version |
Description: A set is a subset of cardinal one iff it is the unit power class of some other set. (Contributed by SF, 17-Mar-2015.) |
Ref | Expression |
---|---|
sspw12.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
sspw12 | ⊢ (A ⊆ 1c ↔ ∃x A = ℘1x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqpw1uni 4330 | . . 3 ⊢ (A ⊆ 1c → A = ℘1∪A) | |
2 | sspw12.1 | . . . . 5 ⊢ A ∈ V | |
3 | 2 | uniex 4317 | . . . 4 ⊢ ∪A ∈ V |
4 | pw1eq 4143 | . . . . 5 ⊢ (x = ∪A → ℘1x = ℘1∪A) | |
5 | 4 | eqeq2d 2364 | . . . 4 ⊢ (x = ∪A → (A = ℘1x ↔ A = ℘1∪A)) |
6 | 3, 5 | spcev 2946 | . . 3 ⊢ (A = ℘1∪A → ∃x A = ℘1x) |
7 | 1, 6 | syl 15 | . 2 ⊢ (A ⊆ 1c → ∃x A = ℘1x) |
8 | pw1ss1c 4158 | . . . 4 ⊢ ℘1x ⊆ 1c | |
9 | sseq1 3292 | . . . 4 ⊢ (A = ℘1x → (A ⊆ 1c ↔ ℘1x ⊆ 1c)) | |
10 | 8, 9 | mpbiri 224 | . . 3 ⊢ (A = ℘1x → A ⊆ 1c) |
11 | 10 | exlimiv 1634 | . 2 ⊢ (∃x A = ℘1x → A ⊆ 1c) |
12 | 7, 11 | impbii 180 | 1 ⊢ (A ⊆ 1c ↔ ∃x A = ℘1x) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2859 ⊆ wss 3257 ∪cuni 3891 1cc1c 4134 ℘1cpw1 4135 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-imak 4189 df-p6 4191 df-sik 4192 df-ssetk 4193 |
This theorem is referenced by: ce0lenc1 6239 |
Copyright terms: Public domain | W3C validator |