NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sspw12 GIF version

Theorem sspw12 4337
Description: A set is a subset of cardinal one iff it is the unit power class of some other set. (Contributed by SF, 17-Mar-2015.)
Hypothesis
Ref Expression
sspw12.1 A V
Assertion
Ref Expression
sspw12 (A 1cx A = 1x)
Distinct variable group:   x,A

Proof of Theorem sspw12
StepHypRef Expression
1 eqpw1uni 4331 . . 3 (A 1cA = 1A)
2 sspw12.1 . . . . 5 A V
32uniex 4318 . . . 4 A V
4 pw1eq 4144 . . . . 5 (x = A1x = 1A)
54eqeq2d 2364 . . . 4 (x = A → (A = 1xA = 1A))
63, 5spcev 2947 . . 3 (A = 1Ax A = 1x)
71, 6syl 15 . 2 (A 1cx A = 1x)
8 pw1ss1c 4159 . . . 4 1x 1c
9 sseq1 3293 . . . 4 (A = 1x → (A 1c1x 1c))
108, 9mpbiri 224 . . 3 (A = 1xA 1c)
1110exlimiv 1634 . 2 (x A = 1xA 1c)
127, 11impbii 180 1 (A 1cx A = 1x)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860   wss 3258  cuni 3892  1cc1c 4135  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194
This theorem is referenced by:  ce0lenc1  6240
  Copyright terms: Public domain W3C validator