NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  brtcfn GIF version

Theorem brtcfn 6247
Description: Binary relationship form of the stratified T-raising function. (Contributed by SF, 18-Mar-2015.)
Hypothesis
Ref Expression
brtcfn.1 A V
Assertion
Ref Expression
brtcfn ({A}TcFnBB = Tc A)

Proof of Theorem brtcfn
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 brtcfn.1 . . . . 5 A V
21snel1c 4141 . . . 4 {A} 1c
3 unieq 3901 . . . . . . 7 (x = {A} → x = {A})
41unisn 3908 . . . . . . 7 {A} = A
53, 4syl6eq 2401 . . . . . 6 (x = {A} → x = A)
6 tceq 6159 . . . . . 6 (x = ATc x = Tc A)
75, 6syl 15 . . . . 5 (x = {A} → Tc x = Tc A)
8 df-tcfn 6108 . . . . 5 TcFn = (x 1c Tc x)
9 tcex 6158 . . . . 5 Tc A V
107, 8, 9fvmpt 5701 . . . 4 ({A} 1c → (TcFn ‘{A}) = Tc A)
112, 10ax-mp 5 . . 3 (TcFn ‘{A}) = Tc A
1211eqeq1i 2360 . 2 ((TcFn ‘{A}) = BTc A = B)
13 fntcfn 6246 . . 3 TcFn Fn 1c
14 fnbrfvb 5359 . . 3 ((TcFn Fn 1c {A} 1c) → ((TcFn ‘{A}) = B ↔ {A}TcFnB))
1513, 2, 14mp2an 653 . 2 ((TcFn ‘{A}) = B ↔ {A}TcFnB)
16 eqcom 2355 . 2 ( Tc A = BB = Tc A)
1712, 15, 163bitr3i 266 1 ({A}TcFnBB = Tc A)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  Vcvv 2860  {csn 3738  cuni 3892  1cc1c 4135   class class class wbr 4640   Fn wfn 4777  cfv 4782   Tc ctc 6094  TcFnctcfn 6098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-cnv 4786  df-rn 4787  df-dm 4788  df-fun 4790  df-fn 4791  df-fv 4796  df-mpt 5653  df-tc 6104  df-tcfn 6108
This theorem is referenced by:  nmembers1lem1  6269  nchoicelem11  6300  nchoicelem16  6305
  Copyright terms: Public domain W3C validator