MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Structured version   Visualization version   GIF version

Theorem 4sqlem18 16298
Description: Lemma for 4sq 16300. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
Assertion
Ref Expression
4sqlem18 (𝜑𝑃𝑆)
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem18
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 prmnn 16018 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
43nncnd 11654 . . 3 (𝜑𝑃 ∈ ℂ)
54mulid2d 10659 . 2 (𝜑 → (1 · 𝑃) = 𝑃)
6 4sq.7 . . . . . . . . . . . 12 𝑀 = inf(𝑇, ℝ, < )
7 4sq.6 . . . . . . . . . . . . . . 15 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
87ssrab3 4057 . . . . . . . . . . . . . 14 𝑇 ⊆ ℕ
9 nnuz 12282 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
108, 9sseqtri 4003 . . . . . . . . . . . . 13 𝑇 ⊆ (ℤ‘1)
11 4sq.1 . . . . . . . . . . . . . . 15 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
12 4sq.2 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℕ)
13 4sq.3 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((2 · 𝑁) + 1))
14 4sq.5 . . . . . . . . . . . . . . 15 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
1511, 12, 13, 1, 14, 7, 64sqlem13 16293 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 ≠ ∅ ∧ 𝑀 < 𝑃))
1615simpld 497 . . . . . . . . . . . . 13 (𝜑𝑇 ≠ ∅)
17 infssuzcl 12333 . . . . . . . . . . . . 13 ((𝑇 ⊆ (ℤ‘1) ∧ 𝑇 ≠ ∅) → inf(𝑇, ℝ, < ) ∈ 𝑇)
1810, 16, 17sylancr 589 . . . . . . . . . . . 12 (𝜑 → inf(𝑇, ℝ, < ) ∈ 𝑇)
196, 18eqeltrid 2917 . . . . . . . . . . 11 (𝜑𝑀𝑇)
20 oveq1 7163 . . . . . . . . . . . . 13 (𝑖 = 𝑀 → (𝑖 · 𝑃) = (𝑀 · 𝑃))
2120eleq1d 2897 . . . . . . . . . . . 12 (𝑖 = 𝑀 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (𝑀 · 𝑃) ∈ 𝑆))
2221, 7elrab2 3683 . . . . . . . . . . 11 (𝑀𝑇 ↔ (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
2319, 22sylib 220 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ (𝑀 · 𝑃) ∈ 𝑆))
2423simprd 498 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑃) ∈ 𝑆)
25114sqlem2 16285 . . . . . . . . 9 ((𝑀 · 𝑃) ∈ 𝑆 ↔ ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2624, 25sylib 220 . . . . . . . 8 (𝜑 → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
2726adantr 483 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
28 simp1l 1193 . . . . . . . . . . . . . 14 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝜑)
2928, 12syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑁 ∈ ℕ)
3028, 13syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 = ((2 · 𝑁) + 1))
3128, 1syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑃 ∈ ℙ)
3228, 14syl 17 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (0...(2 · 𝑁)) ⊆ 𝑆)
33 simp1r 1194 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑀 ∈ (ℤ‘2))
34 simp2ll 1236 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑎 ∈ ℤ)
35 simp2lr 1237 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑏 ∈ ℤ)
36 simp2rl 1238 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑐 ∈ ℤ)
37 simp2rr 1239 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → 𝑑 ∈ ℤ)
38 eqid 2821 . . . . . . . . . . . . 13 (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
39 eqid 2821 . . . . . . . . . . . . 13 (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
40 eqid 2821 . . . . . . . . . . . . 13 (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
41 eqid 2821 . . . . . . . . . . . . 13 (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) = (((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
42 eqid 2821 . . . . . . . . . . . . 13 (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀) = (((((((𝑎 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑏 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2)) + (((((𝑐 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2) + ((((𝑑 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))↑2))) / 𝑀)
43 simp3 1134 . . . . . . . . . . . . 13 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
4411, 29, 30, 31, 32, 7, 6, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 434sqlem17 16297 . . . . . . . . . . . 12 ¬ ((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))))
4544pm2.21i 119 . . . . . . . . . . 11 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) ∧ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2)))) → ¬ 𝑀 ∈ (ℤ‘2))
46453expia 1117 . . . . . . . . . 10 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ))) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4746anassrs 470 . . . . . . . . 9 ((((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ (𝑐 ∈ ℤ ∧ 𝑑 ∈ ℤ)) → ((𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4847rexlimdvva 3294 . . . . . . . 8 (((𝜑𝑀 ∈ (ℤ‘2)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
4948rexlimdvva 3294 . . . . . . 7 ((𝜑𝑀 ∈ (ℤ‘2)) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ∃𝑐 ∈ ℤ ∃𝑑 ∈ ℤ (𝑀 · 𝑃) = (((𝑎↑2) + (𝑏↑2)) + ((𝑐↑2) + (𝑑↑2))) → ¬ 𝑀 ∈ (ℤ‘2)))
5027, 49mpd 15 . . . . . 6 ((𝜑𝑀 ∈ (ℤ‘2)) → ¬ 𝑀 ∈ (ℤ‘2))
5150pm2.01da 797 . . . . 5 (𝜑 → ¬ 𝑀 ∈ (ℤ‘2))
5223simpld 497 . . . . . . 7 (𝜑𝑀 ∈ ℕ)
53 elnn1uz2 12326 . . . . . . 7 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
5452, 53sylib 220 . . . . . 6 (𝜑 → (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
5554ord 860 . . . . 5 (𝜑 → (¬ 𝑀 = 1 → 𝑀 ∈ (ℤ‘2)))
5651, 55mt3d 150 . . . 4 (𝜑𝑀 = 1)
5756, 19eqeltrrd 2914 . . 3 (𝜑 → 1 ∈ 𝑇)
58 oveq1 7163 . . . . . 6 (𝑖 = 1 → (𝑖 · 𝑃) = (1 · 𝑃))
5958eleq1d 2897 . . . . 5 (𝑖 = 1 → ((𝑖 · 𝑃) ∈ 𝑆 ↔ (1 · 𝑃) ∈ 𝑆))
6059, 7elrab2 3683 . . . 4 (1 ∈ 𝑇 ↔ (1 ∈ ℕ ∧ (1 · 𝑃) ∈ 𝑆))
6160simprbi 499 . . 3 (1 ∈ 𝑇 → (1 · 𝑃) ∈ 𝑆)
6257, 61syl 17 . 2 (𝜑 → (1 · 𝑃) ∈ 𝑆)
635, 62eqeltrrd 2914 1 (𝜑𝑃𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wne 3016  wrex 3139  {crab 3142  wss 3936  c0 4291   class class class wbr 5066  cfv 6355  (class class class)co 7156  infcinf 8905  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  cz 11982  cuz 12244  ...cfz 12893   mod cmo 13238  cexp 13430  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-gz 16266
This theorem is referenced by:  4sqlem19  16299
  Copyright terms: Public domain W3C validator