MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bezoutlem1 Structured version   Visualization version   GIF version

Theorem bezoutlem1 14967
Description: Lemma for bezout 14974. (Contributed by Mario Carneiro, 15-Mar-2014.)
Hypotheses
Ref Expression
bezout.1 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
bezout.3 (𝜑𝐴 ∈ ℤ)
bezout.4 (𝜑𝐵 ∈ ℤ)
Assertion
Ref Expression
bezoutlem1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem bezoutlem1
StepHypRef Expression
1 bezout.3 . . . 4 (𝜑𝐴 ∈ ℤ)
2 fveq2 5987 . . . . . . 7 (𝑧 = 𝐴 → (abs‘𝑧) = (abs‘𝐴))
3 oveq1 6433 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 · 𝑥) = (𝐴 · 𝑥))
42, 3eqeq12d 2529 . . . . . 6 (𝑧 = 𝐴 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
54rexbidv 2938 . . . . 5 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥)))
6 zre 11122 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
7 1z 11148 . . . . . . . . 9 1 ∈ ℤ
8 ax-1rid 9761 . . . . . . . . . 10 (𝑧 ∈ ℝ → (𝑧 · 1) = 𝑧)
98eqcomd 2520 . . . . . . . . 9 (𝑧 ∈ ℝ → 𝑧 = (𝑧 · 1))
10 oveq2 6434 . . . . . . . . . . 11 (𝑥 = 1 → (𝑧 · 𝑥) = (𝑧 · 1))
1110eqeq2d 2524 . . . . . . . . . 10 (𝑥 = 1 → (𝑧 = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 1)))
1211rspcev 3186 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝑧 = (𝑧 · 1)) → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
137, 9, 12sylancr 693 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥))
14 eqeq1 2518 . . . . . . . . 9 ((abs‘𝑧) = 𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ 𝑧 = (𝑧 · 𝑥)))
1514rexbidv 2938 . . . . . . . 8 ((abs‘𝑧) = 𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑧 = (𝑧 · 𝑥)))
1613, 15syl5ibrcom 235 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
17 neg1z 11154 . . . . . . . . 9 -1 ∈ ℤ
18 recn 9781 . . . . . . . . . . 11 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
1918mulm1d 10232 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = -𝑧)
20 neg1cn 10879 . . . . . . . . . . 11 -1 ∈ ℂ
21 mulcom 9777 . . . . . . . . . . 11 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (-1 · 𝑧) = (𝑧 · -1))
2220, 18, 21sylancr 693 . . . . . . . . . 10 (𝑧 ∈ ℝ → (-1 · 𝑧) = (𝑧 · -1))
2319, 22eqtr3d 2550 . . . . . . . . 9 (𝑧 ∈ ℝ → -𝑧 = (𝑧 · -1))
24 oveq2 6434 . . . . . . . . . . 11 (𝑥 = -1 → (𝑧 · 𝑥) = (𝑧 · -1))
2524eqeq2d 2524 . . . . . . . . . 10 (𝑥 = -1 → (-𝑧 = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · -1)))
2625rspcev 3186 . . . . . . . . 9 ((-1 ∈ ℤ ∧ -𝑧 = (𝑧 · -1)) → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
2717, 23, 26sylancr 693 . . . . . . . 8 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥))
28 eqeq1 2518 . . . . . . . . 9 ((abs‘𝑧) = -𝑧 → ((abs‘𝑧) = (𝑧 · 𝑥) ↔ -𝑧 = (𝑧 · 𝑥)))
2928rexbidv 2938 . . . . . . . 8 ((abs‘𝑧) = -𝑧 → (∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥) ↔ ∃𝑥 ∈ ℤ -𝑧 = (𝑧 · 𝑥)))
3027, 29syl5ibrcom 235 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = -𝑧 → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥)))
31 absor 13747 . . . . . . 7 (𝑧 ∈ ℝ → ((abs‘𝑧) = 𝑧 ∨ (abs‘𝑧) = -𝑧))
3216, 30, 31mpjaod 394 . . . . . 6 (𝑧 ∈ ℝ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
336, 32syl 17 . . . . 5 (𝑧 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝑧) = (𝑧 · 𝑥))
345, 33vtoclga 3149 . . . 4 (𝐴 ∈ ℤ → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
351, 34syl 17 . . 3 (𝜑 → ∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥))
36 bezout.4 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
3736zcnd 11223 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3837adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ ℤ) → 𝐵 ∈ ℂ)
3938mul01d 9986 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐵 · 0) = 0)
4039oveq2d 6442 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = ((𝐴 · 𝑥) + 0))
411zcnd 11223 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
42 zcn 11123 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
43 mulcl 9775 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
4441, 42, 43syl2an 492 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → (𝐴 · 𝑥) ∈ ℂ)
4544addid1d 9987 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + 0) = (𝐴 · 𝑥))
4640, 45eqtrd 2548 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ((𝐴 · 𝑥) + (𝐵 · 0)) = (𝐴 · 𝑥))
4746eqeq2d 2524 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) ↔ (abs‘𝐴) = (𝐴 · 𝑥)))
48 0z 11129 . . . . . 6 0 ∈ ℤ
49 oveq2 6434 . . . . . . . . 9 (𝑦 = 0 → (𝐵 · 𝑦) = (𝐵 · 0))
5049oveq2d 6442 . . . . . . . 8 (𝑦 = 0 → ((𝐴 · 𝑥) + (𝐵 · 𝑦)) = ((𝐴 · 𝑥) + (𝐵 · 0)))
5150eqeq2d 2524 . . . . . . 7 (𝑦 = 0 → ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))))
5251rspcev 3186 . . . . . 6 ((0 ∈ ℤ ∧ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0))) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5348, 52mpan 701 . . . . 5 ((abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 0)) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
5447, 53syl6bir 242 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5554reximdva 2904 . . 3 (𝜑 → (∃𝑥 ∈ ℤ (abs‘𝐴) = (𝐴 · 𝑥) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
5635, 55mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)))
57 nnabscl 13772 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℕ)
5857ex 448 . . 3 (𝐴 ∈ ℤ → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
591, 58syl 17 . 2 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ ℕ))
60 eqeq1 2518 . . . . 5 (𝑧 = (abs‘𝐴) → (𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
61602rexbidv 2943 . . . 4 (𝑧 = (abs‘𝐴) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
62 bezout.1 . . . 4 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))}
6361, 62elrab2 3237 . . 3 ((abs‘𝐴) ∈ 𝑀 ↔ ((abs‘𝐴) ∈ ℕ ∧ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))))
6463simplbi2com 654 . 2 (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (abs‘𝐴) = ((𝐴 · 𝑥) + (𝐵 · 𝑦)) → ((abs‘𝐴) ∈ ℕ → (abs‘𝐴) ∈ 𝑀))
6556, 59, 64sylsyld 58 1 (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1938  wne 2684  wrex 2801  {crab 2804  cfv 5689  (class class class)co 6426  cc 9689  cr 9690  0cc0 9691  1c1 9692   + caddc 9694   · cmul 9696  -cneg 10018  cn 10775  cz 11118  abscabs 13681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-2nd 6935  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-sup 8107  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-n0 11048  df-z 11119  df-uz 11428  df-rp 11575  df-seq 12532  df-exp 12591  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683
This theorem is referenced by:  bezoutlem2OLD  14968  bezoutlem4OLD  14970  bezoutlem2  14971  bezoutlem4  14973
  Copyright terms: Public domain W3C validator