Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-bary1lem Structured version   Visualization version   GIF version

Theorem bj-bary1lem 34593
Description: Lemma for bj-bary1 34595: expression for a barycenter of two points in one dimension (complex line). (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
bj-bary1.a (𝜑𝐴 ∈ ℂ)
bj-bary1.b (𝜑𝐵 ∈ ℂ)
bj-bary1.x (𝜑𝑋 ∈ ℂ)
bj-bary1.neq (𝜑𝐴𝐵)
Assertion
Ref Expression
bj-bary1lem (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))

Proof of Theorem bj-bary1lem
StepHypRef Expression
1 bj-bary1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
2 bj-bary1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
31, 2mulcld 10663 . . . . . . . . 9 (𝜑 → (𝐵 · 𝐴) ∈ ℂ)
4 bj-bary1.x . . . . . . . . . 10 (𝜑𝑋 ∈ ℂ)
54, 2mulcld 10663 . . . . . . . . 9 (𝜑 → (𝑋 · 𝐴) ∈ ℂ)
63, 5subcld 10999 . . . . . . . 8 (𝜑 → ((𝐵 · 𝐴) − (𝑋 · 𝐴)) ∈ ℂ)
74, 1mulcld 10663 . . . . . . . 8 (𝜑 → (𝑋 · 𝐵) ∈ ℂ)
82, 1mulcld 10663 . . . . . . . 8 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
96, 7, 8addsub12d 11022 . . . . . . 7 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))))
103, 5, 8sub32d 11031 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)))
111, 2bj-subcom 34591 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐴) − (𝐴 · 𝐵)) = 0)
1211oveq1d 7173 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐴) − (𝐴 · 𝐵)) − (𝑋 · 𝐴)) = (0 − (𝑋 · 𝐴)))
1310, 12eqtrd 2858 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵)) = (0 − (𝑋 · 𝐴)))
1413oveq2d 7174 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + (((𝐵 · 𝐴) − (𝑋 · 𝐴)) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
159, 14eqtrd 2858 . . . . . 6 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
16 0cnd 10636 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
177, 16, 5addsubassd 11019 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) + (0 − (𝑋 · 𝐴))))
187addid1d 10842 . . . . . . 7 (𝜑 → ((𝑋 · 𝐵) + 0) = (𝑋 · 𝐵))
1918oveq1d 7173 . . . . . 6 (𝜑 → (((𝑋 · 𝐵) + 0) − (𝑋 · 𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2015, 17, 193eqtr2d 2864 . . . . 5 (𝜑 → (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
211, 4, 2subdird 11099 . . . . . 6 (𝜑 → ((𝐵𝑋) · 𝐴) = ((𝐵 · 𝐴) − (𝑋 · 𝐴)))
224, 2, 1subdird 11099 . . . . . 6 (𝜑 → ((𝑋𝐴) · 𝐵) = ((𝑋 · 𝐵) − (𝐴 · 𝐵)))
2321, 22oveq12d 7176 . . . . 5 (𝜑 → (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) = (((𝐵 · 𝐴) − (𝑋 · 𝐴)) + ((𝑋 · 𝐵) − (𝐴 · 𝐵))))
244, 1, 2subdid 11098 . . . . 5 (𝜑 → (𝑋 · (𝐵𝐴)) = ((𝑋 · 𝐵) − (𝑋 · 𝐴)))
2520, 23, 243eqtr4rd 2869 . . . 4 (𝜑 → (𝑋 · (𝐵𝐴)) = (((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)))
2625oveq1d 7173 . . 3 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)))
271, 4subcld 10999 . . . . 5 (𝜑 → (𝐵𝑋) ∈ ℂ)
2827, 2mulcld 10663 . . . 4 (𝜑 → ((𝐵𝑋) · 𝐴) ∈ ℂ)
294, 2subcld 10999 . . . . 5 (𝜑 → (𝑋𝐴) ∈ ℂ)
3029, 1mulcld 10663 . . . 4 (𝜑 → ((𝑋𝐴) · 𝐵) ∈ ℂ)
311, 2subcld 10999 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℂ)
32 bj-bary1.neq . . . . . 6 (𝜑𝐴𝐵)
3332necomd 3073 . . . . 5 (𝜑𝐵𝐴)
341, 2, 33subne0d 11008 . . . 4 (𝜑 → (𝐵𝐴) ≠ 0)
3528, 30, 31, 34divdird 11456 . . 3 (𝜑 → ((((𝐵𝑋) · 𝐴) + ((𝑋𝐴) · 𝐵)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
3626, 35eqtrd 2858 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))))
374, 31, 34divcan4d 11424 . 2 (𝜑 → ((𝑋 · (𝐵𝐴)) / (𝐵𝐴)) = 𝑋)
3827, 2, 31, 34div23d 11455 . . 3 (𝜑 → (((𝐵𝑋) · 𝐴) / (𝐵𝐴)) = (((𝐵𝑋) / (𝐵𝐴)) · 𝐴))
3929, 1, 31, 34div23d 11455 . . 3 (𝜑 → (((𝑋𝐴) · 𝐵) / (𝐵𝐴)) = (((𝑋𝐴) / (𝐵𝐴)) · 𝐵))
4038, 39oveq12d 7176 . 2 (𝜑 → ((((𝐵𝑋) · 𝐴) / (𝐵𝐴)) + (((𝑋𝐴) · 𝐵) / (𝐵𝐴))) = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
4136, 37, 403eqtr3d 2866 1 (𝜑𝑋 = ((((𝐵𝑋) / (𝐵𝐴)) · 𝐴) + (((𝑋𝐴) / (𝐵𝐴)) · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  (class class class)co 7158  cc 10537  0cc0 10539   + caddc 10542   · cmul 10544  cmin 10872   / cdiv 11299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300
This theorem is referenced by:  bj-bary1  34595
  Copyright terms: Public domain W3C validator