MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div23d Structured version   Visualization version   GIF version

Theorem div23d 11030
Description: A commutative/associative law for division. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
div1d.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divmuld.3 (𝜑𝐶 ∈ ℂ)
divassd.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
div23d (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))

Proof of Theorem div23d
StepHypRef Expression
1 div1d.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divmuld.3 . 2 (𝜑𝐶 ∈ ℂ)
4 divassd.4 . 2 (𝜑𝐶 ≠ 0)
5 div23 10896 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
61, 2, 3, 4, 5syl112anc 1481 1 (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wne 2932  (class class class)co 6813  cc 10126  0cc0 10128   · cmul 10133   / cdiv 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877
This theorem is referenced by:  bcpasc  13302  abslem2  14278  geolim  14800  bpolydiflem  14984  efaddlem  15022  eftlub  15038  bitsinv1lem  15365  pjthlem1  23408  itg2monolem3  23718  dvmulbr  23901  dvrecg  23935  dvmptdiv  23936  dvtaylp  24323  itgulm  24361  tanregt0  24484  logtayl2  24607  cxpeq  24697  heron  24764  dcubic2  24770  cubic2  24774  dquartlem1  24777  dquartlem2  24778  dquart  24779  quart1lem  24781  quart1  24782  dvatan  24861  atantayl  24863  jensenlem2  24913  lgamgulmlem2  24955  lgamgulmlem3  24956  ftalem2  24999  bclbnd  25204  bposlem9  25216  lgseisenlem4  25302  lgsquadlem1  25304  lgsquadlem2  25305  dchrvmasumlem1  25383  mulog2sumlem2  25423  2vmadivsumlem  25428  selberg3lem1  25445  selberg4lem1  25448  selberg4  25449  selberg3r  25457  pntrlog2bndlem4  25468  pntrlog2bndlem5  25469  pntibndlem2  25479  pntlemo  25495  brbtwn2  25984  colinearalg  25989  axsegconlem10  26005  axpaschlem  26019  axcontlem8  26050  pjhthlem1  28559  sinccvglem  31873  knoppndvlem14  32822  bj-bary1lem  33471  dvtan  33773  binomcxplemnotnn0  39057  dvnprodlem2  40665  itgsinexp  40673  stirlinglem3  40796  stirlinglem4  40797  dirkertrigeqlem3  40820  fourierdlem95  40921
  Copyright terms: Public domain W3C validator