Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrxfr Structured version   Visualization version   GIF version

Theorem cgrxfr 33516
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
cgrxfr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝑁

Proof of Theorem cgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝑁 ∈ ℕ)
2 simpl3r 1225 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐹 ∈ (𝔼‘𝑁))
3 simpl3l 1224 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐷 ∈ (𝔼‘𝑁))
4 btwndiff 33488 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
51, 2, 3, 4syl3anc 1367 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
6 simpl1 1187 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
7 simpr 487 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑔 ∈ (𝔼‘𝑁))
8 simpl3l 1224 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
9 simpl21 1247 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpl22 1248 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
11 axsegcon 26713 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
126, 7, 8, 9, 10, 11syl122anc 1375 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
1312adantr 483 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
14 anass 471 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))))
15 simpl1 1187 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
16 simprl 769 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
17 simprr 771 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
18 simpl22 1248 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
19 simpl23 1249 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
20 axsegcon 26713 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2115, 16, 17, 18, 19, 20syl122anc 1375 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2221adantr 483 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
23 anass 471 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
24 df-3an 1085 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)))
2524anbi2i 624 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
2623, 25bitr4i 280 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))))
27 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷𝑔)
2827ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷𝑔)
2928necomd 3071 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑔𝐷)
30 simpl1 1187 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
31 simpr1 1190 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
32 simpl3l 1224 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
33 simpr2 1191 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
34 simpr3 1192 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁))
35 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
3635ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
37 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝑔, 𝑓⟩)
3830, 31, 32, 33, 34, 36, 37btwnexchand 33487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑓⟩)
39 simpl21 1247 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 simpl22 1248 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
41 simpl23 1249 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
4230, 31, 32, 33, 34, 36, 37btwnexch3and 33482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝑓⟩)
43 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4443ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
45 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
4645ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
47 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)
4830, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47cgrextendand 33470 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩)
4938, 48jca 514 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
50 simpl3r 1225 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
51 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5251ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5330, 32, 50, 31, 52btwncomand 33476 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝐹⟩)
54 simpllr 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5554ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5630, 39, 41, 32, 50, 55cgrcomand 33452 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)
5753, 56jca 514 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))
5829, 49, 573jca 1124 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)))
5958ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))))
60 segconeq 33471 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6130, 32, 39, 41, 31, 34, 50, 60syl133anc 1389 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6259, 61syld 47 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑓 = 𝐹))
6362imp 409 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑓 = 𝐹)
64 opeq2 4804 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑔, 𝑓⟩ = ⟨𝑔, 𝐹⟩)
6564breq2d 5078 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝑔, 𝑓⟩ ↔ 𝑒 Btwn ⟨𝑔, 𝐹⟩))
66 opeq2 4804 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑒, 𝑓⟩ = ⟨𝑒, 𝐹⟩)
6766breq1d 5076 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
6865, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝐹 → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)))
6968biimpa 479 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
70 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → 𝑒 Btwn ⟨𝑔, 𝐹⟩)
71 btwnexch3 33481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7230, 31, 32, 33, 50, 71syl122anc 1375 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7335, 70, 72syl2ani 608 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7473imp 409 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)
75 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7675adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7730, 32, 33, 39, 40, 76cgrcomand 33452 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩)
7854ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
79 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)
8030, 33, 50, 40, 41, 79cgrcomand 33452 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)
81 brcgr3 33507 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8230, 39, 40, 41, 32, 33, 50, 81syl133anc 1389 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8382adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8477, 78, 80, 83mpbir3and 1338 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)
8574, 84jca 514 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
8685expr 459 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8769, 86syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8887expcomd 419 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))))
8988impr 457 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9063, 89mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9190expr 459 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9226, 91sylanb 583 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9392an32s 650 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9493rexlimdva 3284 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9522, 94mpd 15 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9695expr 459 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9714, 96sylanb 583 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9897an32s 650 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9998reximdva 3274 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
10013, 99mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
101100expr 459 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
102101an32s 650 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
103102rexlimdva 3284 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → (∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
1045, 103mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
105104ex 415 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cop 4573   class class class wbr 5066  cfv 6355  cn 11638  𝔼cee 26674   Btwn cbtwn 26675  Cgrccgr 26676  Cgr3ccgr3 33497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-ee 26677  df-btwn 26678  df-cgr 26679  df-ofs 33444  df-cgr3 33502
This theorem is referenced by:  btwnxfr  33517  lineext  33537  seglecgr12im  33571  segletr  33575
  Copyright terms: Public domain W3C validator