Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrxfr Structured version   Visualization version   GIF version

Theorem cgrxfr 31166
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
cgrxfr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝑁

Proof of Theorem cgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1056 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝑁 ∈ ℕ)
2 simpl3r 1109 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐹 ∈ (𝔼‘𝑁))
3 simpl3l 1108 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐷 ∈ (𝔼‘𝑁))
4 btwndiff 31138 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
51, 2, 3, 4syl3anc 1317 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
6 simpl1 1056 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
7 simpr 475 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑔 ∈ (𝔼‘𝑁))
8 simpl3l 1108 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
9 simpl21 1131 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpl22 1132 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
11 axsegcon 25553 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
126, 7, 8, 9, 10, 11syl122anc 1326 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
1312adantr 479 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
14 anass 678 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))))
15 simpl1 1056 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
16 simprl 789 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
17 simprr 791 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
18 simpl22 1132 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
19 simpl23 1133 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
20 axsegcon 25553 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2115, 16, 17, 18, 19, 20syl122anc 1326 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2221adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
23 anass 678 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
24 df-3an 1032 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)))
2524anbi2i 725 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
2623, 25bitr4i 265 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))))
27 simplrr 796 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷𝑔)
2827ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷𝑔)
2928necomd 2836 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑔𝐷)
30 simpl1 1056 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
31 simpr1 1059 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
32 simpl3l 1108 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
33 simpr2 1060 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
34 simpr3 1061 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁))
35 simprl 789 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
3635ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
37 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝑔, 𝑓⟩)
3830, 31, 32, 33, 34, 36, 37btwnexchand 31137 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑓⟩)
39 simpl21 1131 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 simpl22 1132 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
41 simpl23 1133 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
4230, 31, 32, 33, 34, 36, 37btwnexch3and 31132 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝑓⟩)
43 simplll 793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4443ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
45 simprr 791 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
4645ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
47 simprrr 800 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)
4830, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47cgrextendand 31120 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩)
4938, 48jca 552 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
50 simpl3r 1109 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
51 simplrl 795 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5251ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5330, 32, 50, 31, 52btwncomand 31126 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝐹⟩)
54 simpllr 794 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5554ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5630, 39, 41, 32, 50, 55cgrcomand 31102 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)
5753, 56jca 552 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))
5829, 49, 573jca 1234 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)))
5958ex 448 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))))
60 segconeq 31121 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6130, 32, 39, 41, 31, 34, 50, 60syl133anc 1340 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6259, 61syld 45 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑓 = 𝐹))
6362imp 443 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑓 = 𝐹)
64 opeq2 4335 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑔, 𝑓⟩ = ⟨𝑔, 𝐹⟩)
6564breq2d 4589 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝑔, 𝑓⟩ ↔ 𝑒 Btwn ⟨𝑔, 𝐹⟩))
66 opeq2 4335 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑒, 𝑓⟩ = ⟨𝑒, 𝐹⟩)
6766breq1d 4587 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
6865, 67anbi12d 742 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝐹 → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)))
6968biimpa 499 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
70 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → 𝑒 Btwn ⟨𝑔, 𝐹⟩)
71 btwnexch3 31131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7230, 31, 32, 33, 50, 71syl122anc 1326 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7335, 70, 72syl2ani 685 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7473imp 443 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)
75 simplrr 796 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7675adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7730, 32, 33, 39, 40, 76cgrcomand 31102 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩)
7854ad2antrl 759 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
79 simprrr 800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)
8030, 33, 50, 40, 41, 79cgrcomand 31102 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)
81 brcgr3 31157 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8230, 39, 40, 41, 32, 33, 50, 81syl133anc 1340 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8382adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8477, 78, 80, 83mpbir3and 1237 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)
8574, 84jca 552 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
8685expr 640 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8769, 86syl5 33 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8887expcomd 452 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))))
8988impr 646 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9063, 89mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9190expr 640 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9226, 91sylanb 487 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9392an32s 841 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9493rexlimdva 3012 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9522, 94mpd 15 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9695expr 640 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9714, 96sylanb 487 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9897an32s 841 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9998reximdva 2999 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
10013, 99mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
101100expr 640 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
102101an32s 841 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
103102rexlimdva 3012 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → (∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
1045, 103mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
105104ex 448 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896  cop 4130   class class class wbr 4577  cfv 5790  cn 10870  𝔼cee 25514   Btwn cbtwn 25515  Cgrccgr 25516  Cgr3ccgr3 31147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-ee 25517  df-btwn 25518  df-cgr 25519  df-ofs 31094  df-cgr3 31152
This theorem is referenced by:  btwnxfr  31167  lineext  31187  seglecgr12im  31221  segletr  31225
  Copyright terms: Public domain W3C validator